Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 10(4): 1137-1151, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38606465

ABSTRACT

Antimicrobial resistance is a global threat to human health. Therefore, efforts have been made to develop new antibacterial agents that address this critical medical issue. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial in clinical development. Recently, phase III clinical trials for gepotidacin treatment of uncomplicated urinary tract infections caused by uropathogens, including Escherichia coli, were stopped for demonstrated efficacy. Because of the clinical promise of gepotidacin, it is important to understand how the compound interacts with its cellular targets, gyrase and topoisomerase IV, from E. coli. Consequently, we determined how gyrase and topoisomerase IV mutations in amino acid residues that are involved in gepotidacin interactions affect the susceptibility of E. coli cells to the compound and characterized the effects of gepotidacin on the activities of purified wild-type and mutant gyrase and topoisomerase IV. Gepotidacin displayed well-balanced dual-targeting of gyrase and topoisomerase IV in E. coli cells, which was reflected in a similar inhibition of the catalytic activities of these enzymes by the compound. Gepotidacin induced gyrase/topoisomerase IV-mediated single-stranded, but not double-stranded, DNA breaks. Mutations in GyrA and ParC amino acid residues that interact with gepotidacin altered the activity of the compound against the enzymes and, when present in both gyrase and topoisomerase IV, reduced the antibacterial activity of gepotidacin against this mutant strain. Our studies provide insights regarding the well-balanced dual-targeting of gyrase and topoisomerase IV by gepotidacin in E. coli.


Subject(s)
Acenaphthenes , DNA Topoisomerase IV , Escherichia coli , Heterocyclic Compounds, 3-Ring , Amino Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , DNA Gyrase/metabolism , DNA Topoisomerase IV/genetics
2.
ACS Infect Dis ; 10(4): 1351-1360, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38606464

ABSTRACT

Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.


Subject(s)
Ciprofloxacin , Gonorrhea , Humans , Ciprofloxacin/pharmacology , Fluoroquinolones/pharmacology , DNA Topoisomerase IV/genetics , DNA Topoisomerase IV/metabolism , Neisseria gonorrhoeae , Gonorrhea/drug therapy , Gonorrhea/microbiology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Microbial Sensitivity Tests
3.
Biochemistry ; 60(21): 1630-1641, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34008964

ABSTRACT

The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.


Subject(s)
DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/physiology , DNA Topoisomerases, Type II/ultrastructure , Antineoplastic Agents/chemistry , DNA/chemistry , DNA Damage/genetics , DNA Damage/physiology , Eukaryota/genetics , Eukaryota/metabolism , Genome/genetics , Humans , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Translocation, Genetic/genetics
4.
Methods Mol Biol ; 2119: 15-24, 2020.
Article in English | MEDLINE | ID: mdl-31989511

ABSTRACT

Agarose gel electrophoresis is one of the most straightforward techniques that can be used to differentiate between topoisomers of closed circular DNA molecules. Generally, the products of reactions that monitor the interconversion of DNA between negatively supercoiled and relaxed DNA or positively supercoiled and relaxed DNA can be resolved by one-dimensional gel electrophoresis. However, in more complex reactions that contain both positively and negatively supercoiled DNA, one-dimensional resolution is insufficient. In these cases, a second dimension of gel electrophoresis is necessary. This chapter describes the technique of two-dimensional agarose gel electrophoresis and how it can be used to resolve a spectrum of DNA topoisomers.


Subject(s)
DNA Topoisomerases/analysis , DNA, Superhelical/analysis , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Agar Gel
5.
Biochemistry ; 58(44): 4447-4455, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31617352

ABSTRACT

Gyrase and topoisomerase IV are the targets of fluoroquinolone antibacterials. However, the rise in antimicrobial resistance has undermined the clinical use of this important drug class. Therefore, it is critical to identify new agents that maintain activity against fluoroquinolone-resistant strains. One approach is to develop non-fluoroquinolone drugs that also target gyrase and topoisomerase IV but interact differently with the enzymes. This has led to the development of the "novel bacterial topoisomerase inhibitor" (NBTI) class of antibacterials. Despite the clinical potential of NBTIs, there is a relative paucity of data describing their mechanism of action against bacterial type II topoisomerases. Consequently, we characterized the activity of GSK126, a naphthyridone/aminopiperidine-based NBTI, against a variety of Gram-positive and Gram-negative bacterial type II topoisomerases, including gyrase from Mycobacterium tuberculosis and gyrase and topoisomerase IV from Bacillus anthracis and Escherichia coli. GSK126 enhanced single-stranded DNA cleavage and suppressed double-stranded cleavage mediated by these enzymes. It was also a potent inhibitor of gyrase-catalyzed DNA supercoiling and topoisomerase IV-catalyzed decatenation. Thus, GSK126 displays a similar bimodal mechanism of action across a variety of species. In contrast, GSK126 displayed a variable ability to overcome fluoroquinolone resistance mutations across these same species. Our results suggest that NBTIs elicit their antibacterial effects by two different mechanisms: inhibition of gyrase/topoisomerase IV catalytic activity or enhancement of enzyme-mediated DNA cleavage. Furthermore, the relative importance of these two mechanisms appears to differ from species to species. Therefore, we propose that the mechanistic basis for the antibacterial properties of NBTIs is bimodal in nature.


Subject(s)
Anti-Bacterial Agents/chemistry , DNA Cleavage/drug effects , Indoles/chemistry , Naphthyridines/chemistry , Piperidines/chemistry , Pyridones/chemistry , Topoisomerase II Inhibitors/chemistry , Bacillus anthracis/enzymology , DNA Breaks, Double-Stranded/drug effects , DNA Gyrase/chemistry , DNA Topoisomerase IV/antagonists & inhibitors , DNA, Bacterial/drug effects , DNA, Single-Stranded/drug effects , Escherichia coli/enzymology , Mycobacterium tuberculosis/enzymology
6.
Bioorg Med Chem Lett ; 28(17): 2961-2968, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30006062

ABSTRACT

Etoposide is an anticancer drug that acts by inducing topoisomerase II-mediated DNA cleavage. Despite its wide use, etoposide is associated with some very serious side-effects including the development of treatment-related acute myelogenous leukemias. Etoposide targets both human topoisomerase IIα and IIß. However, the contributions of the two enzyme isoforms to the therapeutic vs. leukemogenic properties of the drug are unclear. In order to develop an etoposide-based drug with specificity for cancer cells that express an active polyamine transport system, the sugar moiety of the drug has been replaced with a polyamine tail. To analyze the effects of this substitution on the specificity of hybrid molecules toward the two enzyme isoforms, we analyzed the activity of a series of etoposide-polyamine hybrids toward human topoisomerase IIα and IIß. All of the compounds displayed an ability to induce enzyme-mediated DNA cleavage that was comparable to or higher than that of etoposide. Relative to the parent drug, the hybrid compounds displayed substantially higher activity toward topoisomerase IIß than IIα. Modeling studies suggest that the enhanced specificity may result from interactions with Gln778 in topoisomerase IIß. The corresponding residue in the α isoform is a methionine.


Subject(s)
Etoposide/pharmacology , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Polyamines/pharmacology , Topoisomerase II Inhibitors/pharmacology , DNA Topoisomerases, Type II/metabolism , Dose-Response Relationship, Drug , Etoposide/chemical synthesis , Etoposide/chemistry , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Ligands , Molecular Docking Simulation , Molecular Structure , Poly-ADP-Ribose Binding Proteins/metabolism , Polyamines/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...