Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(3): e0228403, 2020.
Article in English | MEDLINE | ID: mdl-32187192

ABSTRACT

Prunus rootstock belonging to subgenera Amygdalus (peach), Prunus (plum) and Cerasus (cherry) are either from the same species as the scion or another one. The number of inter-species (including inter-subgenera) hybrids has increased as a result of broadening the genetic basis for stress (biotic and abiotic) resistance/tolerance. Identifying genes associated with important traits and responses requires expression analysis. Relative quantification is the simplest and most popular alternative, which requires reference genes (housekeeping) to normalize RT-qPCR data. However, there is a scarcity of validated housekeeping genes for hybrid Prunus rootstock species. This research aims to increase the number of housekeeping genes suitable for Prunus rootstock expression analysis. Twenty-one candidate housekeeping genes were pre-selected from previous RNAseq data that compared the response of root transcriptomes of two rootstocks subgenera to hypoxia treatment, 'Mariana 2624' (P. cerasifera Ehrh.× P. munsoniana W. Wight & Hedrick), and 'Mazzard F12/1' (P. avium L.). Representing groups of low, intermediate or high levels of expression, the genes were assayed by RT-qPCR at 72 hours of hypoxia treatment and analyzed with NormFinder software. A sub-set of seven housekeeping genes that presented the highest level of stability were selected, two with low levels of expression (Unknown 3, Unknown 7) and five with medium levels (GTB 1, TUA 3, ATPase P, PRT 6, RP II). The stability of these genes was evaluated under different stress conditions, cold and heat with the hybrid 'Mariana 2624' and N nutrition with the hybrids 'Colt' (P. avium × P. pseudocerasus Lindl.) and 'Garnem' [P. dulcis Mill.× (P. persica L.× P. davidiana Carr.)]. The algorithms of geNorm and BestKeeper software also were used to analyze the performance of these genes as housekeepers. Stability rankings varied according to treatments, genotypes and the software for evaluation, but the gene GBT 1 often had the highest ranking. However, most of the genes are suitable depending on the stressor and/or genotype to be evaluated. No optimal number of reference genes could be determined with geNorm software when all conditions and genotypes were considered. These results strongly suggest that relative RT-qPCR should be analyzed separately with their respective best housekeeper according to the treatment and/or genotypes in Prunus spp. rootstocks.


Subject(s)
Gene Expression Profiling , Genes, Essential/genetics , Plant Roots/genetics , Prunus/genetics
2.
Plant Physiol Biochem ; 126: 32-38, 2018 May.
Article in English | MEDLINE | ID: mdl-29499433

ABSTRACT

Most table grape (Vitis vinifera L.) varieties require gibberellic acid (GA3) applications to obtain an adequate berry size in order to satisfy market requirements. However, GA3 treatments also produce severe berry drop in some cultivars, which occurs mainly after a cold storage period during post-harvest. Berry drop in bunches treated with GA3 has been related to the hardening and thickening of the pedicel produced by the over-accumulation of cellulose and its lignification. The main goal of this study was to compare the morphology and gene expression in pedicel samples of genotypes contrasting for berry drop susceptibility. These genotypes are Thompson Seedless, which exhibits a low incidence of berry drop, and a genetic line (Line #23) of INIA's breeding program that is very susceptible to berry drop at harvest and after storage in bunches sprayed with GA3. The parameters measured to study this phenomenon during fruit growth and post-harvest storage included fruit detachment force (FDF), hardness and thickness of the pedicel and berry drop frequency. Histological analyses of pedicel structures at harvest showed an increase in cell size and deposition of lignin in the cortex zone in both contrasting genotypes treated with GA3. The expression profile in both genotypes of the key lignin biosynthesis genes Vv4CL4, VvCCR1L and VvCAD1 analyzed by quantitative real time PCR (qPCR) revealed evident changes in response to GA3 treatments. In particular, gene VvCAD1 is overexpressed (100X) in pedicels of line #23 treated with GA3 after 30 and 45 days in cold storage compared to control. Moreover, the frequency of berry drop was higher for Line #23 treated with GA3 than for the control (23% vs. 1%). Our results suggest that gibberellic acid regulates the expression of the biosynthesis of lignin genes, generating changes in cell wall composition and pedicel structure that result in an increase in berry drop.


Subject(s)
Fruit , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Lignin/biosynthesis , Plant Proteins , Vitis , Fruit/genetics , Fruit/metabolism , Gibberellins/pharmacokinetics , Lignin/genetics , Plant Proteins/genetics , Vitis/genetics , Vitis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...