Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz J Microbiol ; 44(2): 447-55, 2013.
Article in English | MEDLINE | ID: mdl-24294236

ABSTRACT

The objectives of this study were to evaluate the ability to produce alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by A. alternata and A. infectoria strains recovered from wheat kernels obtained from one of the main production area in Argentina; to confirm using AFLPs molecular markers the identify of the isolates up to species level, and to evaluate the intra and inter-specific genetic diversity of these two Alternaria species. Among all the Alternaria strains tested (254), 84% of them were able to produce mycotoxins. The most frequent profile of toxin production found was the co-production of AOH and AME in both species tested. TA was only produced by strains of A. alternata. Amplified fragment polymorphism (AFLPs) analysis was applied to a set of 89 isolates of Alternaria spp (40 were A. infectoria and 49 were A. alternata) in order to confirm the morphological identification. The results showed that AFLPs are powerful diagnostic tool for differentiating between A. alternata and A. infectoria. Indeed, in the current study the outgroup strains, A. tenuissima was consistently classified. Characteristic polymorphic bands separated these two species regardless of the primer combination used. Related to intraspecific variability, A. alternata and A. infectoria isolates evaluated seemed to form and homogeneous group with a high degree of similarity among the isolates within each species. However, there was more scoreable polymorphism within A. alternata than within A. infectoria isolates. There was a concordance between morphological identification and separation up to species level using molecular markers. Clear polymorphism both within and between species showed that AFLP can be used to asses genetic variation in A. alternata and A. infectoria. The most important finding of the present study was the report on AOH and AME production by A. infectoria strains isolated from wheat kernels in Argentina on a semisynthetic media for the first time. Also, specific bands for A. alternata and A. infectoria have been identified; these may be useful for the design of specific PCR primers in order to differentiate these species and to detect them in cereals.


Subject(s)
Alternaria/classification , Alternaria/metabolism , Amplified Fragment Length Polymorphism Analysis , Molecular Typing , Mycological Typing Techniques , Mycotoxins/genetics , Triticum/microbiology , Alternaria/genetics , Alternaria/isolation & purification , Argentina , Genetic Variation
2.
Braz. j. microbiol ; 44(2): 447-455, 2013. ilus, tab
Article in English | LILACS | ID: lil-688581

ABSTRACT

The objectives of this study were to evaluate the ability to produce alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by A. alternata and A. infectoria strains recovered from wheat kernels obtained from one of the main production area in Argentina; to confirm using AFLPs molecular markers the identify of the isolates up to species level, and to evaluate the intra and inter-specific genetic diversity of these two Alternaria species. Among all the Alternaria strains tested (254), 84% of them were able to produce mycotoxins. The most frequent profile of toxin production found was the co-production of AOH and AME in both species tested. TA was only produced by strains of A. alternata. Amplified fragment polymorphism (AFLPs) analysis was applied to a set of 89 isolates of Alternaria spp (40 were A. infectoria and 49 were A. alternata) in order to confirm the morphological identification. The results showed that AFLPs are powerful diagnostic tool for differentiating between A. alternata and A. infectoria. Indeed, in the current study the outgroup strains, A. tenuissima was consistently classified. Characteristic polymorphic bands separated these two species regardless of the primer combination used. Related to intraspecific variability, A. alternata and A. infectoria isolates evaluated seemed to form and homogeneous group with a high degree of similarity among the isolates within each species. However, there was more scoreable polymorphism within A. alternata than within A. infectoria isolates. There was a concordance between morphological identification and separation up to species level using molecular markers. Clear polymorphism both within and between species showed that AFLP can be used to asses genetic variation in A. alternata and A. infectoria. The most important finding of the present study was the report on AOH and AME production by A. infectoria strains isolated from wheat kernels in Argentina on a semisynthetic media for the first time. Also, specific bands for A. alternata and A. infectoria have been identified; these may be useful for the design of specific PCR primers in order to differentiate these species and to detect them in cereals.


Subject(s)
Amplified Fragment Length Polymorphism Analysis , Alternaria/classification , Alternaria/metabolism , Molecular Typing , Mycological Typing Techniques , Mycotoxins/genetics , Triticum/microbiology , Argentina , Alternaria/genetics , Alternaria/isolation & purification , Genetic Variation
3.
Int J Food Microbiol ; 149(2): 127-32, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21737171

ABSTRACT

The aim of this study was to determine the effects of water activity (a(w)) (0.99-0.90), temperature (15, 25 and 30°C) and their interactions on growth and alternariol (AOH) and alternariol monomethyl ether (AME) production by Alternaria alternata on irradiated soya beans. Maximum growth rates were obtained at 0.980 a(w) and 25°C. Minimum a(w) level for growth was dependent on temperature. Both strains were able to grow at the lowest a(w) assayed (0.90). Maximum amount of AOH was produced at 0.98 a(w) but at different temperatures, 15 and 25°C, for the strains RC 21 and RC 39 respectively. Maximum AME production was obtained at 0.98 a(w) and 30°C for both strains. The concentration range of both toxins varied considerably depending on a(w) and temperature interactions. The two metabolites were produced over the temperature range 15 to 30°C and a(w) range 0.99 to 0.96. The limiting a(w) for detectable mycotoxin production is slightly greater than that for growth. Two-dimensional profiles of a(w)× temperature were developed from these data to identify areas where conditions indicate a significant risk from AOH and AME accumulation on soya bean. Knowledge of AOH and AME production under marginal or sub-optimal temperature and a(w) conditions for growth can be important since improper storage conditions accompanied by elevated temperature and moisture content in the grain can favour further mycotoxin production and lead to reduction in grain quality. This could present a hazard if the grain is used for human consumption or animal feedstuff.


Subject(s)
Alternaria/growth & development , Food Irradiation , Food Microbiology , Glycine max/microbiology , Mycotoxins/biosynthesis , Alternaria/metabolism , Alternaria/radiation effects , Humans , Lactones/metabolism , Mycotoxins/analysis , Glycine max/chemistry , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...