Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Dev Biol ; 509: 1-10, 2024 May.
Article in English | MEDLINE | ID: mdl-38311164

ABSTRACT

Saliva is vital to oral health, fulfilling multiple functions in the oral cavity. Three pairs of major salivary glands and hundreds of minor salivary glands contribute to saliva production. The secretory acinar cells within these glands include two distinct populations. Serous acinar cells secrete a watery saliva containing enzymes, while mucous acinar cells secrete a more viscous fluid containing highly glycosylated mucins. Despite their shared developmental origins, the parotid gland (PG) is comprised of only serous acinar cells, while the sublingual gland (SLG) contains predominantly mucous acinar cells. The instructive signals that govern the identity of serous versus mucous acinar cell phenotypes are not yet known. The homeobox transcription factor Nkx2.3 is uniquely expressed in the SLG. Disruption of the Nkx2.3 gene was reported to delay the maturation of SLG mucous acinar cells. To examine whether Nkx2.3 plays a role in directing the mucous cell phenotype, we analyzed SLG from Nkx2.3-/- mice using RNAseq, immunostaining and proteomic analysis of saliva. Our results indicate that Nkx2.3, most likely in concert with other transcription factors uniquely expressed in the SLG, is a key regulator of the molecular program that specifies the identity of mucous acinar cells.


Subject(s)
Proteomics , Transcription Factors , Mice , Animals , Transcription Factors/genetics , Salivary Glands , Sublingual Gland , Parotid Gland , Homeodomain Proteins/genetics
2.
Am J Physiol Cell Physiol ; 326(3): C742-C748, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38284125

ABSTRACT

The key role of CFTR in secretory epithelia has been extensively documented. Additionally, CFTR plays a significant role in ion absorption in exocrine glands, including salivary and sweat glands. Most of the knowledge about CFTR expression comes from animal models such as the mouse or the rat, but there is limited information about CFTR expression in human tissues. In the present study, we assessed the expression of CFTR in human submandibular and parotid glands. Consistent with findings in rodent salivary glands, our immunolocalization studies show that CFTR is expressed in duct cells. However, CFTR expression in human salivary glands differs from that in rodents, as immunolocalization and single-cell RNA sequencing analysis from a previous study performed in the human parotid gland revealed the presence of CFTR protein and transcripts within a distinct cell cluster. Based on cell marker expression, this cluster corresponds to acinar cells. To obtain functional evidence supporting CFTR expression, we isolated human parotid acinar cells through collagenase digestion. Acinar cells displayed an anion conductance that was activated in response to cAMP-increasing agents and was effectively blocked by CFTRInh172, a known CFTR blocker. This study provides novel evidence of CFTR expression within acinar cells of human salivary glands. This finding challenges the established model positioning CFTR exclusively in duct cells from exocrine glands.NEW & NOTEWORTHY This study addresses the uncertainty about the impact of CFTR on human salivary gland function. We found CFTR transcripts in a subset of duct cells known as ionocytes, as well as in acinar cells. Isolated human parotid acinar cells exhibited Cl- conductance consistent with CFTR activity. This marks the first documented evidence of functional CFTR expression in human salivary gland acinar cells.


Subject(s)
Acinar Cells , Cystic Fibrosis Transmembrane Conductance Regulator , Humans , Rats , Mice , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Salivary Glands/metabolism , Submandibular Gland/metabolism , Parotid Gland/metabolism
3.
Acta Biomater ; 166: 187-200, 2023 08.
Article in English | MEDLINE | ID: mdl-37150277

ABSTRACT

We recently developed a salivary gland tissue mimetic (SGm), comprised of salivary gland cells encapsulated in matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) hydrogels within arrays of ∼320 µm diameter spherical cavities molded in PDMS. The SGm provides a functional and physiologically relevant platform well-suited to high-throughput drug screening for radioprotective compounds. However, the utility of the SGm would benefit from improved retention of acinar cell phenotype and function. We hypothesized that tuning biochemical cues presented within the PEG hydrogel matrix would improve maintenance of acinar cell phenotype and function by mimicking the natural extracellular matrix microenvironment of the intact gland. Hydrogels formed using slower-degrading MMP-sensitive peptide crosslinkers showed >2-fold increase in sphere number formed at 48 h, increased expression of acinar cell markers, and more robust response to calcium stimulation by the secretory agonist, carbachol, with reduced SGm tissue cluster disruption and outgrowth during prolonged culture. The incorporation of adhesive peptides containing RGD or IKVAV improved calcium flux response to secretory agonists at 14 days of culture. Tuning the hydrogel matrix improved cell aggregation, and promoted acinar cell phenotype, and stability of the SGm over 14 days of culture. Furthermore, combining this matrix with optimized media conditions synergistically prolonged the retention of the acinar cell phenotype in SGm. STATEMENT OF SIGNIFICANCE: Salivary gland (SG) dysfunction occurs due to off-target radiation due to head and neck cancer treatments. Progress in understanding gland dysfunction and developing therapeutic strategies for the SG are hampered by the lack of in vitro models, as salivary gland cells rapidly lose critical secretory function within 24 hours in vitro. Herein, we identify properties of poly(ethylene glycol) hydrogel matrices that enhance the secretory phenotype of SG tissue mimetics within the previously-described SG-microbubble tissue chip environment. Combining slow-degrading hydrogels with media conditions optimized for secretory marker expression further enhanced functional secretory response and secretory marker expression.


Subject(s)
Calcium , Hydrogels , Hydrogels/pharmacology , Hydrogels/chemistry , Calcium/metabolism , Salivary Glands , Phenotype , Extracellular Matrix/metabolism , Peptides/pharmacology , Peptides/chemistry , Biocompatible Materials/metabolism , Polyethylene Glycols/pharmacology , Polyethylene Glycols/chemistry
4.
Dis Model Mech ; 15(11)2022 11 01.
Article in English | MEDLINE | ID: mdl-36263624

ABSTRACT

Many patients treated for head and neck cancers experience salivary gland hypofunction due to radiation damage. Understanding the mechanisms of cellular damage induced by radiation treatment is important in order to design methods of radioprotection. In addition, it is crucial to recognize the indirect effects of irradiation and the systemic responses that may alter saliva secretion. In this study, radiation was delivered to murine submandibular glands (SMGs) bilaterally, using a 137Cs gamma ray irradiator, or unilaterally, using a small-animal radiation research platform (SARRP). Analysis at 3, 24 and 48 h showed dynamic changes in mRNA and protein expression in SMGs irradiated bilaterally. Unilateral irradiation using the SARRP caused similar changes in the irradiated SMGs, as well as significant off-target, bystander effects in the non-irradiated contralateral SMGs.


Subject(s)
Cesium Radioisotopes , Submandibular Gland , Mice , Animals , Submandibular Gland/metabolism , Submandibular Gland/radiation effects , Cesium Radioisotopes/metabolism , Bystander Effect , Salivation/radiation effects
6.
Adv Healthc Mater ; 11(7): e2101948, 2022 04.
Article in English | MEDLINE | ID: mdl-34994104

ABSTRACT

Progress in the development of salivary gland regenerative strategies is limited by poor maintenance of the secretory function of salivary gland cells (SGCs) in vitro. To reduce the precipitous loss of secretory function, a modified approach to isolate intact acinar cell clusters and intercalated ducts (AIDUCs), rather than commonly used single cell suspension, is investigated. This isolation approach yields AIDUCs that maintain many of the cell-cell and cell-matrix interactions of intact glands. Encapsulation of AIDUCs in matrix metalloproteinase (MMP)-degradable PEG hydrogels promotes self-assembly into salivary gland mimetics (SGm) with acinar-like structure. Expression of Mist1, a transcription factor associated with secretory function, is detectable throughout the in vitro culture period up to 14 days. Immunohistochemistry also confirms expression of acinar cell markers (NKCC1, PIP and AQP5), duct cell markers (K7 and K5), and myoepithelial cell markers (SMA). Robust carbachol and ATP-stimulated calcium flux is observed within the SGm for up to 14 days after encapsulation, indicating that secretory function is maintained. Though some acinar-to-ductal metaplasia is observed within SGm, it is reduced compared to previous reports. In conclusion, cell-cell interactions maintained within AIDUCs together with the hydrogel microenvironment may be a promising platform for salivary gland regenerative strategies.


Subject(s)
Acinar Cells , Hydrogels , Acinar Cells/metabolism , Hydrogels/metabolism , Matrix Metalloproteinases/metabolism , Salivary Glands/metabolism
7.
J Prosthet Dent ; 127(3): 383-391, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34140141

ABSTRACT

The maintenance of balanced oral homeostasis depends on saliva. A readily available and molecularly rich source of biological fluid, saliva fulfills many functions in the oral cavity, including lubrication, pH buffering, and tooth mineralization. Saliva composition and flow can be modulated by different factors, including circadian rhythm, diet, age, drugs, and disease. Recent events have revealed that saliva plays a central role in the dissemination and detection of the SARS-CoV-2 coronavirus. A working knowledge of saliva function and physiology is essential for dental health professionals.


Subject(s)
COVID-19 , Saliva , Humans , Mouth , Oral Health , SARS-CoV-2 , Saliva/chemistry
9.
Commun Biol ; 4(1): 361, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742114

ABSTRACT

Radiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands. We demonstrate that mouse and human salivary tissues encapsulated within matrix metalloproteinase-degradable poly(ethylene glycol) hydrogels formed in MB arrays are viable, express key salivary gland markers, and exhibit polarized localization of functional proteins. The salivary gland mimetics (SGm) respond to calcium signaling agonists and secrete salivary proteins. SGm were then used to evaluate radiosensitivity and mitigation of radiation damage using a radioprotective compound. Altogether, SGm exhibit phenotypic and functional parameters of salivary glands, and provide an enabling technology for high-content/throughput drug testing.


Subject(s)
Acinar Cells/drug effects , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Radiation Injuries/prevention & control , Salivary Glands/drug effects , Tissue Array Analysis , Xerostomia/prevention & control , Acinar Cells/metabolism , Acinar Cells/radiation effects , Animals , Calcium Signaling/drug effects , Cells, Cultured , Female , Humans , Hydrogels , Male , Mice, Inbred C57BL , Microbubbles , Middle Aged , Parotid Gland/drug effects , Parotid Gland/metabolism , Parotid Gland/radiation effects , Phenotype , Polyethylene Glycols/chemistry , Radiation Injuries/etiology , Radiation Injuries/metabolism , Salivary Glands/metabolism , Salivary Glands/radiation effects , Xerostomia/etiology , Xerostomia/metabolism
10.
Int J Radiat Oncol Biol Phys ; 109(4): 1028-1039, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33181249

ABSTRACT

PURPOSE: In a combined retrospective and prospective study, human salivary glands were investigated after radiation treatment for head and neck cancers. The aim was to assess acinar cell loss and morphologic changes after radiation therapy and to determine whether irradiated salivary glands have regenerative potential. METHODS AND MATERIALS: Irradiated human submandibular and parotid salivary glands were collected from 16 patients at a range of time intervals after completion of radiation therapy (RT). Control samples were collected from 14 patients who had not received radiation treatments. Tissue sections were analyzed using immunohistochemistry to stain for molecular markers. RESULTS: Human submandibular and parotid glands isolated less than 1 year after RT showed a near complete loss of acinar cells. However, acinar units expressing functional secretory markers were observed in all samples isolated at later intervals after RT. Significantly lower acinar cell numbers and increased fibrosis were found in glands treated with combined radiation and chemotherapy, in comparison to glands treated with RT alone. Irradiated samples showed increased staining for duct cell keratin markers, as well as many cells coexpressing acinar- and duct cell-specific markers, in comparison to nonirradiated control samples. CONCLUSIONS: After RT, acinar cell clusters are maintained in human submandibular glands for years. The surviving acinar cells retain proliferative potential, although significant regeneration does not occur. Persistent DNA damage, increased fibrosis, and altered cell identity suggest mechanisms that may impair regeneration.


Subject(s)
Acinar Cells/radiation effects , Head and Neck Neoplasms/radiotherapy , Submandibular Gland/radiation effects , Acinar Cells/pathology , Cell Plasticity , Cell Proliferation/radiation effects , Chemoradiotherapy/adverse effects , DNA Damage , Humans , Prospective Studies , Radiotherapy/adverse effects , Radiotherapy Dosage , Retrospective Studies , Submandibular Gland/drug effects , Submandibular Gland/pathology , Vimentin/analysis
11.
Cell Tissue Res ; 380(3): 487-497, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31900666

ABSTRACT

Salivary gland function is severely disrupted by radiation therapy used to treat patients diagnosed with head and neck cancer and by Sjögren's syndrome. The resulting condition, which results in xerostomia or dry mouth, is due to irreversible loss of the secretory acinar cells within the major salivary glands. There are presently no treatments for the resolution of xerostomia. Cell-based approaches could be employed to repopulate acinar cells in the salivary gland but investigations into potential therapeutic strategies are limited by the challenges of maintaining and expanding acinar cells in vitro. We investigate the encapsulation of salivary gland cell aggregates within PEG hydrogels as a means of culturing secretory acinar cells. Lineage tracing was used to monitor the fate of acinar cells isolated from murine submandibular gland (SMG). Upon initial formation in vitro, SMG aggregates comprise both acinar and duct cells, with the majority cells of acinar origin. With longer culture times, acinar cells significantly decreased the expression of specific markers and activated the expression of keratins normally found in duct cells. A similar acinar-to-duct cell transition was also observed in vivo, following duct ligation injury. These results indicate that under conditions of stress (mechanical and enzymatic isolation from glands) or injury (duct ligation), salivary gland acinar cells exhibit plasticity to adopt a duct cell phenotype.


Subject(s)
Acinar Cells , Cell Plasticity , Submandibular Gland , Acinar Cells/cytology , Acinar Cells/pathology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cells, Cultured , Male , Mice , Mice, Inbred C57BL , Regeneration , Submandibular Gland/cytology , Submandibular Gland/injuries , Submandibular Gland/pathology
12.
FEBS Lett ; 594(2): 376-382, 2020 01.
Article in English | MEDLINE | ID: mdl-31538335

ABSTRACT

To develop treatments for salivary gland dysfunction, it is important to understand how human salivary glands are maintained under normal homeostasis. Previous data from our lab demonstrated that murine salivary acinar cells maintain the acinar cell population through self-duplication under conditions of homeostasis, as well as after injury. Early studies suggested that human acinar cells are mitotically active, but the identity of the resultant daughter cells was not clear. Using markers of cell cycle activity and mitosis, as well as an ex vivo 5-Ethynyl-2´-deoxyuridine assay, we show that human salivary gland acinar cells divide to generate daughter acinar cells. As in mouse, our data indicate that human salivary gland homeostasis is supported by the intrinsic mitotic capacity of acinar cells.


Subject(s)
Acinar Cells/cytology , Cell Differentiation/genetics , Mitosis/genetics , Salivary Glands/growth & development , Animals , Cell Cycle/genetics , Cell Differentiation/drug effects , Deoxyuridine/analogs & derivatives , Deoxyuridine/pharmacology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Humans , Mice , Salivary Glands/cytology
14.
Stem Cells ; 37(9): 1144-1150, 2019 09.
Article in English | MEDLINE | ID: mdl-31175700

ABSTRACT

In the effort to develop cell-based therapies to treat salivary gland dysfunction, many different populations of cells in the adult salivary glands have been proposed as stem cells. These cell populations vary, depending on the assay used, and are often nonoverlapping, leading to the conclusion that salivary glands harbor multiple stem cells. The goal of this review is to critically appraise the assays and properties used to identify stem cells in the adult salivary gland, and to consider the caveats of each. Re-evaluation of the defining criteria may help to reconcile the many potential stem cell populations described in the salivary gland, in order to increase comparability between studies and build consensus in the field. Stem Cells 2019;37:1144-1150.


Subject(s)
Cell Differentiation/physiology , Cell Lineage/physiology , Cell Proliferation/physiology , Salivary Glands/cytology , Stem Cell Transplantation/methods , Stem Cells/physiology , Adult , Biomarkers/metabolism , Cell Self Renewal/physiology , Humans , Salivary Glands/metabolism , Stem Cells/cytology , Stem Cells/metabolism
15.
Arch Oral Biol ; 97: 122-130, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30384153

ABSTRACT

OBJECTIVE: The objective of this study was to characterize the mechanism by which salivary gland cells (SGC) aggregate in vitro. DESIGN: Timelapse microscopy was utilized to analyze the process of salivary gland aggregate formation using both primary murine and human salivary gland cells. The role of cell density, proliferation, extracellular calcium, and secretory acinar cells in aggregate formation was investigated. Finally, the ability of cells isolated from irradiated glands to form aggregates was also evaluated. RESULTS: Salivary gland cell self-organization rather than proliferation was the predominant mechanism of aggregate formation in both primary mouse and human salivary gland cultures. Aggregation was found to require extracellular calcium while acinar lineage cells account for ∼80% of the total aggregate cell population. Finally, aggregation was not impaired by irradiation. CONCLUSIONS: The data reveal that aggregation occurs as a result of heterogeneous salivary gland cell self-organization rather than from stem cell proliferation and differentiation, contradicting previous dogma. These results suggest a re-evaluation of aggregate formation as a criterion defining salivary gland stem cells.


Subject(s)
Acinar Cells/cytology , Salivary Glands/cytology , Acinar Cells/radiation effects , Animals , Calcium/physiology , Cell Count , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Mice , Salivary Glands/radiation effects
16.
Cell Rep ; 24(6): 1464-1470.e3, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30089258

ABSTRACT

In the adult salivary glands, the origin of replacement and regenerated acinar cells remains unclear. Although many reports describe the identification of stem cells in adult salivary glands, we have shown that differentiated acinar cells can be maintained and regenerated through self-duplication. Here, we have used genetic mouse models to further investigate acinar cell replacement and regeneration during homeostasis and after injury. Under normal conditions or after duct ligation, replacement of duct and acinar cells occurs through lineage-restricted progenitors. In contrast, after irradiation, in vivo lineage tracing shows that acinar, as well as duct, cells contribute to acinar cell regeneration, revealing that cellular plasticity is involved in salivary gland repair. Our results also indicate that even after radiation damage, several cell populations have regenerative potential for restoring salivary gland function.


Subject(s)
Cell Plasticity/genetics , Salivary Glands/metabolism , Cell Differentiation , Cell Proliferation , Humans
17.
J Vis Exp ; (135)2018 05 03.
Article in English | MEDLINE | ID: mdl-29781991

ABSTRACT

Two common goals of salivary gland therapeutics are prevention and cure of tissue dysfunction following either autoimmune or radiation injury. By locally delivering bioactive compounds to the salivary glands, greater tissue concentrations can be safely achieved versus systemic administration. Furthermore, off target tissue effects from extra-glandular accumulation of material can be dramatically reduced. In this regard, retroductal injection is a widely used method for investigating both salivary gland biology and pathophysiology. Retroductal administration of growth factors, primary cells, adenoviral vectors, and small molecule drugs has been shown to support gland function in the setting of injury. We have previously shown the efficacy of a retroductally injected nanoparticle-siRNA strategy to maintain gland function following irradiation. Here, a highly effective and reproducible method to administer nanomaterials to the murine submandibular gland through Wharton's duct is detailed (Figure 1). We describe accessing the oral cavity and outline the steps necessary to cannulate Wharton's duct, with further observations serving as quality checks throughout the procedure.


Subject(s)
Nanoparticles/chemistry , Submandibular Gland/physiopathology , Animals , Humans , Mice , Mice, Inbred C57BL
18.
J Vis Exp ; (135)2018 05 04.
Article in English | MEDLINE | ID: mdl-29781993

ABSTRACT

Hyposalivation is commonly observed in the autoimmune reaction of Sjögren's syndrome or following radiation injury to the major salivary glands. In these cases, questions remain regarding disease pathogenesis and effective interventions. An optimized technique that allows functional assessment of the salivary glands is invaluable for investigating exocrine gland biology, dysfunction, and therapeutics. Here, we present a step by step approach to performing pilocarpine stimulated saliva secretion, including tracheostomy and the dissection of the three major murine salivary glands. We also detail the appropriate murine head and neck anatomy accessed during these techniques. This approach is scalable, allowing for multiple mice to be processed simultaneously, thus improving the efficiency of the work flow. We aim to improve the reproducibility of these methods, each of which has further applications within the field. In addition to saliva collection, we discuss metrics for quantifying and normalizing functional capacity of these tissues. Representative data are included from submandibular glands with depressed salivary gland function 2 weeks following fractionated radiation (4 doses of 6.85 Gy).


Subject(s)
Pilocarpine/therapeutic use , Salivary Glands/diagnostic imaging , Xerostomia/diagnostic imaging , Animals , Dose Fractionation, Radiation , Female , Humans , Male , Mice , Mice, Inbred C57BL , Pilocarpine/pharmacology , Xerostomia/radiotherapy
19.
Physiol Genomics ; 50(4): 263-271, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29373073

ABSTRACT

RNA-Seq was used to better understand the molecular nature of the biological differences among the three major exocrine salivary glands in mammals. Transcriptional profiling found that the adult murine parotid, submandibular, and sublingual salivary glands express greater than 14,300 protein-coding genes, and nearly 2,000 of these genes were differentially expressed. Principle component analysis of the differentially expressed genes revealed three distinct clusters according to gland type. The three salivary gland transcriptomes were dominated by a relatively few number of highly expressed genes (6.3%) that accounted for more than 90% of transcriptional output. Of the 912 transcription factors expressed in the major salivary glands, greater than 90% of them were detected in all three glands, while expression for ~2% of them was enriched in an individual gland. Expression of these unique transcription factors correlated with sublingual and parotid specific subsets of both highly expressed and differentially expressed genes. Gene ontology analyses revealed that the highly expressed genes common to all glands were associated with global functions, while many of the genes expressed in a single gland play a major role in the function of that gland. In summary, transcriptional profiling of the three murine major salivary glands identified a limited number of highly expressed genes, differentially expressed genes, and unique transcription factors that represent the transcriptional signatures underlying gland-specific biological properties.


Subject(s)
Salivary Glands/metabolism , Transcriptome/genetics , Animals , Mice , Parotid Gland/metabolism , Sublingual Gland/metabolism
20.
ACS Nano ; 12(1): 187-197, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29232104

ABSTRACT

Nanoparticles (NPs) interact with complex protein milieus in biological fluids, and these interactions have profound effects on NP physicochemical properties and function. Surprisingly, most studies neglect the impact of these interactions, especially with respect to NP-mediated siRNA delivery. Here, the effects of serum on colloidal stability and siRNA delivery of a pH-responsive micellar NP delivery system were characterized. Results show cationic NP-siRNA complexes aggregate in ≥2% serum in buffer, but are stable in serum-free media. Furthermore, nonaggregated NP-siRNA delivered in serum-free media result in 4-fold greater siRNA uptake in vitro, compared to aggregated NP-siRNA. Interestingly, pH-responsive membrane lysis behavior, which is required for endosomal escape, and NP-siRNA dissociation, necessary for gene knockdown, are significantly reduced in serum. Consistent with these data, nonaggregated NP-siRNA in serum-free conditions result in highly efficient gene silencing, even at doses as low as 5 nM siRNA. NP-siRNA diameter was measured at albumin and IgG levels mimicking biological fluids. Neither albumin nor IgG alone induces NP-siRNA aggregation, implicating other serum proteins in NP colloidal instability. Finally, as a proof-of-principle that stability is maintained in established in vivo models, transmission electron microscopy reveals NP-siRNA are taken up by ductal epithelial cells in a nonaggregated state when injected retroductally into mouse salivary glands in vivo. Overall, this study shows serum-induced NP-siRNA aggregation significantly diminishes efficiency of siRNA delivery by reducing uptake, pH-responsive membrane lysis activity, and NP-siRNA dissociation. Moreover, these results highlight the importance of local NP-mediated drug delivery and are broadly applicable to other drug delivery systems.


Subject(s)
Delayed-Action Preparations/metabolism , Micelles , Nanoparticles/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacokinetics , Serum/metabolism , Animals , Colloids/metabolism , Female , Gene Transfer Techniques , Humans , Mice , Mice, Inbred C57BL , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Salivary Glands/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...