Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 1703, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30737417

ABSTRACT

The ribosome flow model with input and output (RFMIO) is a deterministic dynamical system that has been used to study the flow of ribosomes during mRNA translation. The input of the RFMIO controls its initiation rate and the output represents the ribosome exit rate (and thus the protein production rate) at the 3' end of the mRNA molecule. The RFMIO and its variants encapsulate important properties that are relevant to modeling ribosome flow such as the possible evolution of "traffic jams" and non-homogeneous elongation rates along the mRNA molecule, and can also be used for studying additional intracellular processes such as transcription, transport, and more. Here we consider networks of interconnected RFMIOs as a fundamental tool for modeling, analyzing and re-engineering the complex mechanisms of protein production. In these networks, the output of each RFMIO may be divided, using connection weights, between several inputs of other RFMIOs. We show that under quite general feedback connections the network has two important properties: (1) it admits a unique steady-state and every trajectory converges to this steady-state; and (2) the problem of how to determine the connection weights so that the network steady-state output is maximized is a convex optimization problem. These mathematical properties make these networks highly suitable as models of various phenomena: property (1) means that the behavior is predictable and ordered, and property (2) means that determining the optimal weights is numerically tractable even for large-scale networks. For the specific case of a feed-forward network of RFMIOs we prove an additional useful property, namely, that there exists a spectral representation for the network steady-state, and thus it can be determined without any numerical simulations of the dynamics. We describe the implications of these results to several fundamental biological phenomena and biotechnological objectives.


Subject(s)
RNA, Messenger/genetics , Ribosomes/metabolism , Algorithms , Models, Biological , Protein Biosynthesis
2.
Sci Rep ; 7(1): 9464, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842606

ABSTRACT

The ribosome flow model on a ring (RFMR) is a deterministic model for ribosome flow along a circularized mRNA. We derive a new spectral representation for the optimal steady-state production rate and the corresponding optimal steady-state ribosomal density in the RFMR. This representation has several important advantages. First, it provides a simple and numerically stable algorithm for determining the optimal values even in very long rings. Second, it enables efficient computation of the sensitivity of the optimal production rate to small changes in the transition rates along the mRNA. Third, it implies that the optimal steady-state production rate is a strictly concave function of the transition rates. Maximizing the optimal steady-state production rate with respect to the rates under an affine constraint on the rates thus becomes a convex optimization problem that admits a unique solution. This solution can be determined numerically using highly efficient algorithms. This optimization problem is important, for example, when re-engineering heterologous genes in a host organism. We describe the implications of our results to this and other aspects of translation.


Subject(s)
Models, Biological , RNA, Messenger/genetics , Ribosomes/genetics , Algorithms , Computer Simulation , Genetic Engineering , Peptide Chain Elongation, Translational , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...