Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 340: 165-92, 2001.
Article in English | MEDLINE | ID: mdl-11494848

ABSTRACT

The analytical methods for characterizing DNA sequence-dependent thermodynamic stability have been reviewed. A set of n-n sequence stability parameters is presented. Examples in which these values are used to calculate the thermodynamic stability of short duplex DNA oligomers are presented. The problem of determining sets of isothermal sequences is addressed by representing DNA sequences as graphs. Representing DNA sequences by a graph descriptor with special mathematical properties minimizes the computational difficulty of determining the number of DNA sequences with identical predicted thermodynamic stability. This is achieved by replacement of a whole set of sequences by a single representative. Applications of this concept were demonstrated for sequences assembled from individual bases and sequences assembled from oligomeric blocks.


Subject(s)
DNA/chemistry , Base Sequence , Binding Sites , Chemical Phenomena , Chemistry, Physical , In Vitro Techniques , Models, Chemical , Nucleic Acid Denaturation , Thermodynamics
2.
Biopolymers ; 52(1): 29-56, 1999.
Article in English | MEDLINE | ID: mdl-10737861

ABSTRACT

Melting experiments were conducted on 22 DNA dumbbells as a function of solvent ionic strength from 25-115 mM Na(+). The dumbbell molecules have short duplex regions comprised of 16-20 base pairs linked on both ends by T(4) single-strand loops. Only the 4-8 central base pairs of the dumbbell stems differ for different molecules, and the six base pairs on both sides of the central sequence and adjoining loops on both ends are the same in every molecule. Results of melting analysis on the 22 new DNA dumbbells are combined with our previous results on 17 other DNA dumbbells, with stem lengths containing from 14-18 base pairs, reported in the first article of this series (Doktycz, Goldstein, Paner, Gallo, and Benight, Biopoly 32, 1992, 849-864). The combination of results comprises a database of optical melting parameters for 39 DNA dumbbells in ionic strengths from 25-115 mM Na(+). This database is employed to evaluate the thermodynamics of singlet, doublet, and triplet sequence-dependent interactions in duplex DNA. Analysis of the 25 mM Na(+) data reveals the existence of significant sequence-dependent triplet or next-nearest-neighbor interactions. The enthalpy of these interactions is evaluated for all possible triplets. Some of the triplet enthalpy values are less than the uncertainty in their evaluation, indicating no measurable interaction for that particular sequence. This finding suggests that the thermodynamic stability of duplex DNA depends on solvent ionic strength in a sequence-dependent manner. As a part of the analysis, the nearest-neighbor (base pair doublet) interactions in 55, 85, and 115 mM Na(+) are also reevaluated from the larger database.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Nucleic Acid Denaturation , Base Sequence , Calorimetry, Differential Scanning , Models, Chemical , Nucleic Acid Conformation/drug effects , Nucleic Acid Denaturation/drug effects , Oligodeoxyribonucleotides/chemical synthesis , Oligodeoxyribonucleotides/chemistry , Osmolar Concentration , Sodium/pharmacology , Spectrophotometry, Ultraviolet , Temperature , Thermodynamics
3.
Biopolymers ; 44(3): 217-39, 1997.
Article in English | MEDLINE | ID: mdl-9591477

ABSTRACT

Many important applications of DNA sequence-dependent hybridization reactions have recently emerged. This has sparked a renewed interest in analytical calculations of sequence-dependent melting stability of duplex DNA. In particular, for many applications it is often desirable to accurately predict the transition temperature, or tm of short duplex DNA oligomers (approximately 20 base pairs or less) from their sequence and concentration. The thermodynamic analytical method underlying these predictive calculations is based on the nearest-neighbor model. At least 11 sets of nearest-neighbor sequence-dependent thermodynamic parameters for DNA have been published. These sets are compared. Use of the nearest-neighbor sets in predicting tm from the DNA sequence is demonstrated, and the ability of the nearest-neighbor parameters to provide accurate predictions of experimental tm's of short duplex DNA oligomers is assessed.


Subject(s)
DNA/chemistry , Oligodeoxyribonucleotides/chemistry , Base Sequence , Biometry , Drug Stability , Models, Chemical , Nucleic Acid Denaturation , Nucleic Acid Hybridization , Thermodynamics
4.
Biopolymers ; 39(6): 779-93, 1996 Dec.
Article in English | MEDLINE | ID: mdl-8946800

ABSTRACT

Optical melting curves of 22 DNA dumbbells with the 16-base pair duplex sequence 5'-G-C-A-T-C-A-T-C-G-A-T-G-A-T-G-C-3' linked on both ends by single-strand loops of A, or C, sequences (iota = 2, 3, 4, 6, 8, 10, 14). T sequences (iota = 2, 3, 4, 6, 8, 10), and G iota sequences (iota = 2, 4) were measured in phosphate buffered solvents containing 30, 70, and 120 mM Na+. For dumbbells with loops comprised of at least three nucleotides, stability is inversely proportional to end-loop size. Dumbbells with loops comprised of only two nucleotide bases generally have lower stabilities than dumbbells with three base nucleotide loops. Experimental melting curves were analyzed in terms of the numerically exact (multistate) statistical thermodynamic model of DNA dumbbell melting previously described (T. M. paner, M. Amaratunga & A. S. Benight (1992), Biopolymers 32, 881). Theoretically calculated melting curves were fitted to experimental curves by simultaneously adjusting model parameters representing statistical weights of intramolecular hairpin loop and single-strand circle states. The systematically determined empirical parameters provided evaluations of the energetics of hairpin loop formation as a function of loop size, sequence, and salt environment. Values of the free energies of hairpin loop formation delta Gloop(n > iota) and single-strand circles, delta Gcir(N) as a function of end-loop size, tau = 2-14, circle size, N = 32 + 2 iota, and loop sequence were obtained. These quantities were found to depend on end-loop size but not loop sequence. Their empirically determined values also varied with solvent ionic strength. Analytical expressions for the partition function Q(T) of the dumbbells were evaluated using the empirically evaluated best-fit loop parameters. From Q(T), the melting transition enthalpy delta H, entropy delta S, and free energy delta G, were evaluated for the dumbbells as a function of end-loop size, sequence, and [Na+]. Since the multistate analysis is based on the numerically exact model, and considers a statistically significant number of theoretically possible partially melted states, it does not require prior assumptions regarding the nature of the melting transition, i.e., whether or not it occurs in a two-state manner. For comparison with the multistate analysis, thermodynamic transition parameters were also evaluated directly from experimental melting curves assuming a two-state transition and using the graphical van't Hoff analysis. Comparisons between results of the multistate and two-state analyses suggested dumbbells with loops comprised of six or fewer residues melted in a two-state manner, while the melting processes for dumbbells with larger end-loops deviate from two-state behavior. Dependence of thermodynamic transition parameters on [Na+] as a function of loop size suggests single-strand end-loops have different counterion binding properties than the melted circle. Results are compared with those obtained in an earlier study of dumbbells with the slightly different stem sequence 5'-G-C-A-T-A-G-A-T-G-A-G-A-A-T-G-C-3' linked on the ends by T iota loops (iota = 2, 3, 4, 6, 8, 10, 14).


Subject(s)
Base Composition , DNA/chemistry , Nucleic Acid Conformation , Nucleic Acid Denaturation , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...