Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 434
Filter
1.
Cereb Cortex ; 33(6): 2997-3011, 2023 03 10.
Article in English | MEDLINE | ID: mdl-35830871

ABSTRACT

Research studies based on tractography have revealed a prominent reduction of asymmetry in some key white-matter tracts in schizophrenia (SCZ). However, we know little about the influence of common genetic risk factors for SCZ on the efficiency of routing on structural brain networks (SBNs). Here, we use a novel recall-by-genotype approach, where we sample young adults from a population-based cohort (ALSPAC:N genotyped = 8,365) based on their burden of common SCZ risk alleles as defined by polygenic risk score (PRS). We compared 181 individuals at extremes of low (N = 91) or high (N = 90) SCZ-PRS under a robust diffusion MRI-based graph theoretical SBN framework. We applied a semi-metric analysis revealing higher SMR values for the high SCZ-PRS group compared with the low SCZ-PRS group in the left hemisphere. Furthermore, a hemispheric asymmetry index showed a higher leftward preponderance of indirect connections for the high SCZ-PRS group compared with the low SCZ-PRS group (PFDR < 0.05). These findings might indicate less efficient structural connectivity in the higher genetic risk group. This is the first study in a population-based sample that reveals differences in the efficiency of SBNs associated with common genetic risk variants for SCZ.


Subject(s)
Schizophrenia , Young Adult , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Genetic Predisposition to Disease/genetics , Brain/diagnostic imaging , Risk Factors , Genotype
2.
Transl Psychiatry ; 11(1): 592, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34785639

ABSTRACT

Gamma oscillations (30-90 Hz) have been proposed as a signature of cortical visual information processing, particularly the balance between excitation and inhibition, and as a biomarker of neuropsychiatric diseases. Magnetoencephalography (MEG) provides highly reliable visual-induced gamma oscillation estimates, both at sensor and source level. Recent studies have reported a deficit of visual gamma activity in schizophrenia patients, in medication naive subjects, and high-risk clinical participants, but the genetic contribution to such a deficit has remained unresolved. Here, for the first time, we use a genetic risk score approach to assess the relationship between genetic risk for schizophrenia and visual gamma activity in a population-based sample drawn from a birth cohort. We compared visual gamma activity in a group (N = 104) with a high genetic risk profile score for schizophrenia (SCZ-PRS) to a group with low SCZ-PRS (N = 99). Source-reconstructed V1 activity was extracted using beamformer analysis applied to MEG recordings using individual MRI scans. No group differences were found in the induced gamma peak amplitude or peak frequency. However, a non-parametric statistical contrast of the response spectrum revealed more robust group differences in the amplitude of high-beta/gamma power across the frequency range, suggesting that overall spectral shape carries important biological information beyond the individual frequency peak. Our findings show that changes in gamma band activity correlate with liability to schizophrenia and suggest that the index changes to synaptic function and neuronal firing patterns that are of pathophysiological relevance rather than consequences of the disorder.


Subject(s)
Schizophrenia , Birth Cohort , Gamma Rhythm , Humans , Magnetoencephalography , Risk Factors , Schizophrenia/genetics
3.
Psychol Med ; 50(7): 1191-1202, 2020 05.
Article in English | MEDLINE | ID: mdl-31144615

ABSTRACT

BACKGROUND: Young people with 22q11.2 deletion syndrome (22q11.2DS) are at high risk for neurodevelopmental disorders. Sleep problems may play a role in this risk but their prevalence, nature and links to psychopathology and cognitive function remain undescribed in this population. METHOD: Sleep problems, psychopathology, developmental coordination and cognitive function were assessed in 140 young people with 22q11.2DS (mean age = 10.1, s.d. = 2.46) and 65 unaffected sibling controls (mean age = 10.8, s.d.SD = 2.26). Primary carers completed questionnaires screening for the children's developmental coordination and autism spectrum disorder. RESULTS: Sleep problems were identified in 60% of young people with 22q11.2DS compared to 23% of sibling controls (OR 5.00, p < 0.001). Two patterns best-described sleep problems in 22q11.2DS: restless sleep and insomnia. Restless sleep was linked to increased ADHD symptoms (OR 1.16, p < 0.001) and impaired executive function (OR 0.975, p = 0.013). Both patterns were associated with elevated symptoms of anxiety disorder (restless sleep: OR 1.10, p = 0.006 and insomnia: OR 1.07, p = 0.045) and developmental coordination disorder (OR 0.968, p = 0.0023, and OR 0.955, p = 0.009). The insomnia pattern was also linked to elevated conduct disorder symptoms (OR 1.53, p = 0.020). CONCLUSIONS: Clinicians and carers should be aware that sleep problems are common in 22q11.2DS and index psychiatric risk, cognitive deficits and motor coordination problems. Future studies should explore the physiology of sleep and the links with the neurodevelopment in these young people.


Subject(s)
22q11 Deletion Syndrome/psychology , Cognitive Dysfunction/complications , Sleep Wake Disorders/epidemiology , Adolescent , Anxiety Disorders/epidemiology , Attention Deficit Disorder with Hyperactivity/epidemiology , Autism Spectrum Disorder/epidemiology , Case-Control Studies , Child , Cognition , Conduct Disorder/epidemiology , Female , Humans , Male , Prevalence , Siblings , Surveys and Questionnaires
5.
Psychol Med ; 48(10): 1608-1615, 2018 07.
Article in English | MEDLINE | ID: mdl-29310738

ABSTRACT

BACKGROUND: The longstanding association between the major histocompatibility complex (MHC) locus and schizophrenia (SZ) risk has recently been accounted for, partially, by structural variation at the complement component 4 (C4) gene. This structural variation generates varying levels of C4 RNA expression, and genetic information from the MHC region can now be used to predict C4 RNA expression in the brain. Increased predicted C4A RNA expression is associated with the risk of SZ, and C4 is reported to influence synaptic pruning in animal models. METHODS: Based on our previous studies associating MHC SZ risk variants with poorer memory performance, we tested whether increased predicted C4A RNA expression was associated with reduced memory function in a large (n = 1238) dataset of psychosis cases and healthy participants, and with altered task-dependent cortical activation in a subset of these samples. RESULTS: We observed that increased predicted C4A RNA expression predicted poorer performance on measures of memory recall (p = 0.016, corrected). Furthermore, in healthy participants, we found that increased predicted C4A RNA expression was associated with a pattern of reduced cortical activity in middle temporal cortex during a measure of visual processing (p < 0.05, corrected). CONCLUSIONS: These data suggest that the effects of C4 on cognition were observable at both a cortical and behavioural level, and may represent one mechanism by which illness risk is mediated. As such, deficits in learning and memory may represent a therapeutic target for new molecular developments aimed at altering C4's developmental role.


Subject(s)
Cognitive Dysfunction/physiopathology , Complement C4a/metabolism , Major Histocompatibility Complex/genetics , Memory Disorders/physiopathology , Psychotic Disorders/genetics , Psychotic Disorders/physiopathology , Temporal Lobe/physiopathology , Adult , Cognitive Dysfunction/diagnostic imaging , Female , Functional Neuroimaging , Gene Expression/genetics , Humans , Ireland , Magnetic Resonance Imaging , Male , Memory Disorders/diagnostic imaging , Memory, Short-Term/physiology , Mental Recall/physiology , Middle Aged , Psychotic Disorders/diagnostic imaging , Temporal Lobe/diagnostic imaging
6.
Neurosci Biobehav Rev ; 80: 23-35, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28528196

ABSTRACT

Psychiatric symptoms are an increasingly recognised feature of movement disorders. Recent identification of causative genes and autoantibodies has allowed detailed analysis of aetiologically homogenous subgroups, thereby enabling determination of the spectrum of psychiatric symptoms in these disorders. This review evaluates the incidence and type of psychiatric symptoms encountered in patients with movement disorders. A broad spectrum of psychiatric symptoms was identified across all subtypes of movement disorder, with depression, generalised anxiety disorder and obsessive-compulsive disorder being most common. Psychosis, schizophrenia and attention deficit hyperactivity disorder were also identified, with the psychiatric symptoms often predating onset of the motor disorder. The high incidence of psychiatric symptoms across such a wide range of movement disorders suggests a degree of common or overlapping pathogenic mechanisms. Our review demonstrates the need for increased clinical awareness of such co-morbidities, which should facilitate early neuropsychiatric intervention and allied specialist treatment for patients.


Subject(s)
Mental Disorders/epidemiology , Movement Disorders/epidemiology , Comorbidity , Humans , Mental Disorders/genetics , Mental Disorders/immunology , Movement Disorders/genetics , Movement Disorders/immunology
7.
Mol Psychiatry ; 22(10): 1502-1508, 2017 10.
Article in English | MEDLINE | ID: mdl-27400856

ABSTRACT

The antipsychotic clozapine is uniquely effective in the management of schizophrenia; however, its use is limited by its potential to induce agranulocytosis. The causes of this, and of its precursor neutropenia, are largely unknown, although genetic factors have an important role. We sought risk alleles for clozapine-associated neutropenia in a sample of 66 cases and 5583 clozapine-treated controls, through a genome-wide association study (GWAS), imputed human leukocyte antigen (HLA) alleles, exome array and copy-number variation (CNV) analyses. We then combined associated variants in a meta-analysis with data from the Clozapine-Induced Agranulocytosis Consortium (up to 163 cases and 7970 controls). In the largest combined sample to date, we identified a novel association with rs149104283 (odds ratio (OR)=4.32, P=1.79 × 10-8), intronic to transcripts of SLCO1B3 and SLCO1B7, members of a family of hepatic transporter genes previously implicated in adverse drug reactions including simvastatin-induced myopathy and docetaxel-induced neutropenia. Exome array analysis identified gene-wide associations of uncommon non-synonymous variants within UBAP2 and STARD9. We additionally provide independent replication of a previously identified variant in HLA-DQB1 (OR=15.6, P=0.015, positive predictive value=35.1%). These results implicate biological pathways through which clozapine may act to cause this serious adverse effect.


Subject(s)
Clozapine/adverse effects , Neutropenia/chemically induced , Neutropenia/genetics , Carrier Proteins/genetics , Case-Control Studies , Clozapine/therapeutic use , Exome , Female , Genome-Wide Association Study , HLA-DQ beta-Chains/genetics , Humans , Male , Neutropenia/metabolism , Odds Ratio , Schizophrenia/drug therapy , Schizophrenia/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics
8.
Mol Psychiatry ; 22(2): 178-182, 2017 02.
Article in English | MEDLINE | ID: mdl-27956746

ABSTRACT

Large-scale genomic studies have made major progress in identifying genetic risk variants for schizophrenia. A key finding from these studies is that there is an increased burden of genomic copy number variants (CNVs) in schizophrenia cases compared with controls. The mechanism through which these CNVs confer risk for the symptoms of schizophrenia, however, remains unclear. One possibility is that schizophrenia risk CNVs impact basic associative learning processes, abnormalities of which have long been associated with the disorder. To investigate whether genes in schizophrenia CNVs impact on specific phases of associative learning we combined human genetics with experimental gene expression studies in animals. In a sample of 11 917 schizophrenia cases and 16 416 controls, we investigated whether CNVs from patients with schizophrenia are enriched for genes expressed during the consolidation, retrieval or extinction of associative memories. We show that CNVs from cases are enriched for genes expressed during fear extinction in the hippocampus, but not genes expressed following consolidation or retrieval. These results suggest that CNVs act to impair inhibitory learning in schizophrenia, potentially contributing to the development of core symptoms of the disorder.


Subject(s)
Association Learning/physiology , DNA Copy Number Variations/genetics , Schizophrenia/genetics , Animals , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Case-Control Studies , Conditioning, Classical , Databases, Factual , Fear/physiology , Fear/psychology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Rats
10.
Hum Mol Genet ; 25(5): 1001-7, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26740555

ABSTRACT

Schizophrenia is a highly heritable disorder. Genome-wide association studies based largely on common alleles have identified over 100 schizophrenia risk loci, but it is also evident from studies of copy number variants (CNVs) and from exome-sequencing studies that rare alleles are also involved. Full characterization of the contribution of rare alleles to the disorder awaits the deployment of sequencing technology in very large sample sizes, meanwhile, as an interim measure, exome arrays allow rare non-synonymous variants to be sampled at a fraction of the cost. In an analysis of exome array data from 13 688 individuals (5585 cases and 8103 controls) from the UK, we found that rare (minor allele frequency < 0.1%) variant association signal was enriched among genes that map to autosomal loci that are genome-wide significant (GWS) in common variant studies of schizophrenia genome-wide association study (PGWAS = 0.01) as well as gene sets known to be enriched for rare variants in sequencing studies (PRARE = 0.026). We also identified the gene-wise equivalent of GWS support for WDR88 (WD repeat-containing protein 88), a gene of unknown function (P = 6.5 × 10(-7)). Rare alleles represented on exome chip arrays contribute to the genetic architecture of schizophrenia, but as is the case for GWAS, very large studies are required to reveal additional susceptibility alleles for the disorder.


Subject(s)
Alleles , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Proteins/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Schizophrenia/genetics , Case-Control Studies , DNA Copy Number Variations , Exome , Female , Gene Frequency , Genome-Wide Association Study , Humans , Male , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sample Size , Schizophrenia/pathology
11.
Mol Psychiatry ; 21(8): 1085-9, 2016 08.
Article in English | MEDLINE | ID: mdl-26390827

ABSTRACT

The genetic architecture of schizophrenia is complex, involving risk alleles ranging from common alleles of weak effect to rare alleles of large effect, the best exemplar of the latter being large copy number variants (CNVs). It is currently unknown whether pathophysiology in those with defined rare mutations overlaps with that in other individuals with the disorder who do not share the same rare mutation. Under an extreme heterogeneity model, carriers of specific high-penetrance mutations form distinct subgroups. In contrast, under a polygenic threshold model, high-penetrance rare allele carriers possess many risk factors, of which the rare allele is the only one, albeit an important, factor. Under the latter model, cases with rare mutations can be expected to share some common risk alleles, and therefore pathophysiological mechanisms, with cases without the same mutation. Here we show that, compared with controls, individuals with schizophrenia who have known pathogenic CNVs carry an excess burden of common risk alleles (P=2.25 × 10(-17)) defined from a genome-wide association study largely based on individuals without known CNVs. Our finding is not consistent with an extreme heterogeneity model for CNV carriers, but does offer support for the polygenic threshold model of schizophrenia. That this is so provides support for the notion that studies aiming to model the effects of rare variation may uncover pathophysiological mechanisms of relevance to those with the disorder more widely.


Subject(s)
DNA Copy Number Variations/genetics , Schizophrenia/genetics , Alleles , Computer Simulation , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Models, Genetic , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors
12.
Psychol Med ; 46(4): 759-70, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26526099

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a common and disabling condition with well-established heritability and environmental risk factors. Gene-environment interaction studies in MDD have typically investigated candidate genes, though the disorder is known to be highly polygenic. This study aims to test for interaction between polygenic risk and stressful life events (SLEs) or childhood trauma (CT) in the aetiology of MDD. METHOD: The RADIANT UK sample consists of 1605 MDD cases and 1064 controls with SLE data, and a subset of 240 cases and 272 controls with CT data. Polygenic risk scores (PRS) were constructed using results from a mega-analysis on MDD by the Psychiatric Genomics Consortium. PRS and environmental factors were tested for association with case/control status and for interaction between them. RESULTS: PRS significantly predicted depression, explaining 1.1% of variance in phenotype (p = 1.9 × 10(-6)). SLEs and CT were also associated with MDD status (p = 2.19 × 10(-4) and p = 5.12 × 10(-20), respectively). No interactions were found between PRS and SLEs. Significant PRSxCT interactions were found (p = 0.002), but showed an inverse association with MDD status, as cases who experienced more severe CT tended to have a lower PRS than other cases or controls. This relationship between PRS and CT was not observed in independent replication samples. CONCLUSIONS: CT is a strong risk factor for MDD but may have greater effect in individuals with lower genetic liability for the disorder. Including environmental risk along with genetics is important in studying the aetiology of MDD and PRS provide a useful approach to investigating gene-environment interactions in complex traits.


Subject(s)
Adult Survivors of Child Adverse Events/psychology , Depressive Disorder, Major/genetics , Gene-Environment Interaction , Life Change Events , Multifactorial Inheritance , Stress, Psychological/genetics , Adult , Adult Survivors of Child Adverse Events/statistics & numerical data , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/psychology , Female , Humans , Male , Middle Aged , Risk Factors , Stress, Psychological/epidemiology , Stress, Psychological/psychology , Young Adult
14.
Mol Psychiatry ; 21(1): 89-93, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25560756

ABSTRACT

Large (>100 kb), rare (<1% in the population) copy number variants (CNVs) have been shown to confer risk for schizophrenia (SZ), but the findings for bipolar disorder (BD) are less clear. In a new BD sample from the United Kingdom (n=2591), we have examined the occurrence of CNVs and compared this with previously reported samples of 6882 SZ and 8842 control subjects. When combined with previous data, we find evidence for a contribution to BD for three SZ-associated CNV loci: duplications at 1q21.1 (P=0.022), deletions at 3q29 (P=0.03) and duplications at 16p11.2 (P=2.3 × 10(-4)). The latter survives multiple-testing correction for the number of recurrent large CNV loci in the genome. Genes in 20 regions (total of 55 genes) were enriched for rare exonic CNVs among BD cases, but none of these survives correction for multiple testing. Finally, our data provide strong support for the hypothesis of a lesser contribution of very large (>500 kb) CNVs in BD compared with SZ, most notably for deletions >1 Mb (P=9 × 10(-4)).


Subject(s)
Bipolar Disorder/genetics , DNA Copy Number Variations , Female , Genotyping Techniques , Humans , Male , Middle Aged , Schizophrenia/genetics , White People
15.
Mol Psychiatry ; 21(9): 1202-7, 2016 09.
Article in English | MEDLINE | ID: mdl-26573769

ABSTRACT

A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P=5.4 × 10(-4)) and targets of the Fragile X mental retardation protein (P=0.0018). No enrichment was observed for activity-regulated cytoskeleton-associated protein (P=0.23) or N-methyl-D-aspartate receptor (P=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Biological Psychiatry/methods , Adolescent , Autistic Disorder/genetics , Canada , Child , Child, Preschool , DNA Copy Number Variations/genetics , Databases, Nucleic Acid , Europe , Female , Genetic Association Studies/methods , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Ireland , Male , Neurodevelopmental Disorders/genetics , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , United Kingdom
16.
Transl Psychiatry ; 5: e607, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26196440

ABSTRACT

Genetic associations involving both rare and common alleles have been reported for schizophrenia but there have been no systematic scans for rare recessive genotypes using fully phased trio data. Here, we use exome sequencing in 604 schizophrenia proband-parent trios to investigate the role of recessive (homozygous or compound heterozygous) nonsynonymous genotypes in the disorder. The burden of recessive genotypes was not significantly increased in probands at either a genome-wide level or in any individual gene after adjustment for multiple testing. At a system level, probands had an excess of nonsynonymous compound heterozygous genotypes (minor allele frequency, MAF ⩽ 1%) in voltage-gated sodium channels (VGSCs; eight in probands and none in parents, P = 1.5 × 10(-)(4)). Previous findings of multiple de novo loss-of-function mutations in this gene family, particularly SCN2A, in autism and intellectual disability provide biological and genetic plausibility for this finding. Pointing further to the involvement of VGSCs in schizophrenia, we found that these genes were enriched for nonsynonymous mutations (MAF ⩽ 0.1%) in cases genotyped using an exome array, (5585 schizophrenia cases and 8103 controls), and that in the trios data, synaptic proteins interacting with VGSCs were also enriched for both compound heterozygosity (P = 0.018) and de novo mutations (P = 0.04). However, we were unable to replicate the specific association with compound heterozygosity at VGSCs in an independent sample of Taiwanese schizophrenia trios (N = 614). We conclude that recessive genotypes do not appear to make a substantial contribution to schizophrenia at a genome-wide level. Although multiple lines of evidence, including several from this study, suggest that rare mutations in VGSCs contribute to the disorder, in the absence of replication of the original findings regarding compound heterozygosity, this conclusion requires evaluation in a larger sample of trios.


Subject(s)
Exome/genetics , Genes, Recessive/genetics , Schizophrenia/genetics , Case-Control Studies , Family , Female , Gene Frequency , Genetic Predisposition to Disease/genetics , Genotype , Heterozygote , Homozygote , Humans , Male , Voltage-Gated Sodium Channels/genetics
17.
Mol Psychiatry ; 20(5): 555-62, 2015 May.
Article in English | MEDLINE | ID: mdl-25754081

ABSTRACT

Prior to the genome-wide association era, candidate gene studies were a major approach in schizophrenia genetics. In this invited review, we consider the current status of 25 historical candidate genes for schizophrenia (for example, COMT, DISC1, DTNBP1 and NRG1). The initial study for 24 of these genes explicitly evaluated common variant hypotheses about schizophrenia. Our evaluation included a meta-analysis of the candidate gene literature, incorporation of the results of the largest genomic study yet published for schizophrenia, ratings from informed researchers who have published on these genes, and ratings from 24 schizophrenia geneticists. On the basis of current empirical evidence and mostly consensual assessments of informed opinion, it appears that the historical candidate gene literature did not yield clear insights into the genetic basis of schizophrenia. A likely reason why historical candidate gene studies did not achieve their primary aims is inadequate statistical power. However, the considerable efforts embodied in these early studies unquestionably set the stage for current successes in genomic approaches to schizophrenia.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Predisposition to Disease/history , Genetic Variation/genetics , Schizophrenia/genetics , Genome-Wide Association Study/history , Genome-Wide Association Study/methods , Genomics , Genotype , History, 20th Century , History, 21st Century , Humans , PubMed/statistics & numerical data
18.
Mol Psychiatry ; 20(12): 1588-95, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25687773

ABSTRACT

We investigated the genetic overlap between Alzheimer's disease (AD) and Parkinson's disease (PD). Using summary statistics (P-values) from large recent genome-wide association studies (GWAS) (total n=89 904 individuals), we sought to identify single nucleotide polymorphisms (SNPs) associating with both AD and PD. We found and replicated association of both AD and PD with the A allele of rs393152 within the extended MAPT region on chromosome 17 (meta analysis P-value across five independent AD cohorts=1.65 × 10(-7)). In independent datasets, we found a dose-dependent effect of the A allele of rs393152 on intra-cerebral MAPT transcript levels and volume loss within the entorhinal cortex and hippocampus. Our findings identify the tau-associated MAPT locus as a site of genetic overlap between AD and PD, and extending prior work, we show that the MAPT region increases risk of Alzheimer's neurodegeneration.


Subject(s)
Alzheimer Disease/genetics , Parkinson Disease/genetics , tau Proteins/genetics , Aged , Aged, 80 and over , Alleles , Apolipoproteins E/genetics , Brain/pathology , Chromosomes, Human, Pair 17 , Female , Genetic Loci , Genetic Pleiotropy , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
19.
Psychol Med ; 45(10): 2215-25, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25698070

ABSTRACT

BACKGROUND: Strategies to dissect phenotypic and genetic heterogeneity of major depressive disorder (MDD) have mainly relied on subphenotypes, such as age at onset (AAO) and recurrence/episodicity. Yet, evidence on whether these subphenotypes are familial or heritable is scarce. The aims of this study are to investigate the familiality of AAO and episode frequency in MDD and to assess the proportion of their variance explained by common single nucleotide polymorphisms (SNP heritability). METHOD: For investigating familiality, we used 691 families with 2-5 full siblings with recurrent MDD from the DeNt study. We fitted (square root) AAO and episode count in a linear and a negative binomial mixed model, respectively, with family as random effect and adjusting for sex, age and center. The strength of familiality was assessed with intraclass correlation coefficients (ICC). For estimating SNP heritabilities, we used 3468 unrelated MDD cases from the RADIANT and GSK Munich studies. After similarly adjusting for covariates, derived residuals were used with the GREML method in GCTA (genome-wide complex trait analysis) software. RESULTS: Significant familial clustering was found for both AAO (ICC = 0.28) and episodicity (ICC = 0.07). We calculated from respective ICC estimates the maximal additive heritability of AAO (0.56) and episodicity (0.15). SNP heritability of AAO was 0.17 (p = 0.04); analysis was underpowered for calculating SNP heritability of episodicity. CONCLUSIONS: AAO and episodicity aggregate in families to a moderate and small degree, respectively. AAO is under stronger additive genetic control than episodicity. Larger samples are needed to calculate the SNP heritability of episodicity. The described statistical framework could be useful in future analyses.


Subject(s)
Depressive Disorder, Major/genetics , Genetic Predisposition to Disease , Adolescent , Adult , Age of Onset , Aged , Aged, 80 and over , Female , Genotype , Germany , Humans , Interviews as Topic , Linear Models , Male , Middle Aged , Phenotype , Polymorphism, Genetic , Siblings , United Kingdom , Young Adult
20.
Mol Psychiatry ; 20(1): 72-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25385368

ABSTRACT

After two decades of frustration, genetic studies of schizophrenia have entered an era of spectacular success. Advances in genotyping technologies and high throughput sequencing, increasing analytic rigour and collaborative efforts on a global scale have generated a profusion of new findings. The broad conclusions from these studies are threefold: (1) schizophrenia is a highly polygenic disorder with a complex array of contributing risk loci across the allelic frequency spectrum; (2) many psychiatric illnesses share risk genes and alleles, specifically, schizophrenia has substantial overlaps with bipolar disorder, intellectual disability, major depressive disorder and autism spectrum disorders; and (3) some convergent biological themes are emerging from studies of schizophrenia and related disorders. In this commentary, we focus on the very recent findings that have emerged in the past 12 months, and in particular, the areas of convergence that are beginning to emerge from multiple study designs.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Schizophrenia/genetics , Bipolar Disorder/etiology , Bipolar Disorder/genetics , Gene Frequency , Genotype , Humans , Intellectual Disability/etiology , Intellectual Disability/genetics , Schizophrenia/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...