Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
Methods Mol Biol ; 2621: 217-239, 2023.
Article in English | MEDLINE | ID: mdl-37041447

ABSTRACT

Upon admission to intensive care units (ICU), the differential diagnosis of almost all infants with diseases of unclear etiology includes single locus genetic diseases. Rapid whole genome sequencing (rWGS), including sample preparation, short-read sequencing-by-synthesis, informatics pipelining, and semiautomated interpretation, can now identify nucleotide and structural variants associated with most genetic diseases with robust analytic and diagnostic performance in as little as 13.5 h. Early diagnosis of genetic diseases transforms medical and surgical management of infants in ICUs, minimizing both the duration of empiric treatment and the delay to start of specific treatment. Both positive and negative rWGS tests have clinical utility and can improve outcomes. Since first described 10 years ago, rWGS has evolved considerably. Here we describe our current methods for routine diagnostic testing for genetic diseases by rWGS in as little as 18 h.


Subject(s)
Critical Illness , Genetic Testing , Infant , Humans , Child , Whole Genome Sequencing/methods , Genetic Testing/methods , Intensive Care Units , Early Diagnosis
3.
NPJ Genom Med ; 8(1): 5, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788231

ABSTRACT

Universal newborn screening (NBS) is a highly successful public health intervention. Archived dried bloodspots (DBS) collected for NBS represent a rich resource for population genomic studies. To fully harness this resource in such studies, DBS must yield high-quality genomic DNA (gDNA) for whole genome sequencing (WGS). In this pilot study, we hypothesized that gDNA of sufficient quality and quantity for WGS could be extracted from archived DBS up to 20 years old without PCR (Polymerase Chain Reaction) amplification. We describe simple methods for gDNA extraction and WGS library preparation from several types of DBS. We tested these methods in DBS from 25 individuals who had previously undergone diagnostic, clinical WGS and 29 randomly selected DBS cards collected for NBS from the California State Biobank. While gDNA from DBS had significantly less yield than from EDTA blood from the same individuals, it was of sufficient quality and quantity for WGS without PCR. All samples DBS yielded WGS that met quality control metrics for high-confidence variant calling. Twenty-eight variants of various types that had been reported clinically in 19 samples were recapitulated in WGS from DBS. There were no significant effects of age or paper type on WGS quality. Archived DBS appear to be a suitable sample type for WGS in population genomic studies.

4.
JAMA Netw Open ; 6(2): e2254069, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36757698

ABSTRACT

Importance: Understanding the causes of infant mortality shapes public health, surveillance, and research investments. However, the association of single-locus (mendelian) genetic diseases with infant mortality is poorly understood. Objective: To determine the association of genetic diseases with infant mortality. Design, Setting, and Participants: This cohort study was conducted at a large pediatric hospital system in San Diego County (California) and included 546 infants (112 infant deaths [20.5%] and 434 infants [79.5%] with acute illness who survived; age, 0 to 1 year) who underwent diagnostic whole-genome sequencing (WGS) between January 2015 and December 2020. Data analysis was conducted between 2015 and 2022. Exposure: Infants underwent WGS either premortem or postmortem with semiautomated phenotyping and diagnostic interpretation. Main Outcomes and Measures: Proportion of infant deaths associated with single-locus genetic diseases. Results: Among 112 infant deaths (54 girls [48.2%]; 8 [7.1%] African American or Black, 1 [0.9%] American Indian or Alaska Native, 8 [7.1%] Asian, 48 [42.9%] Hispanic, 1 [0.9%] Native Hawaiian or Pacific Islander, and 34 [30.4%] White infants) in San Diego County between 2015 and 2020, single-locus genetic diseases were the most common identifiable cause of infant mortality, with 47 genetic diseases identified in 46 infants (41%). Thirty-nine (83%) of these diseases had been previously reported to be associated with childhood mortality. Twenty-eight death certificates (62%) for 45 of the 46 infants did not mention a genetic etiology. Treatments that can improve outcomes were available for 14 (30%) of the genetic diseases. In 5 of 7 infants in whom genetic diseases were identified postmortem, death might have been avoided had rapid, diagnostic WGS been performed at time of symptom onset or regional intensive care unit admission. Conclusions and Relevance: In this cohort study of 112 infant deaths, the association of genetic diseases with infant mortality was higher than previously recognized. Strategies to increase neonatal diagnosis of genetic diseases and immediately implement treatment may decrease infant mortality. Additional study is required to explore the generalizability of these findings and measure reduction in infant mortality.


Subject(s)
Infant Mortality , Whole Genome Sequencing , Child , Female , Humans , Infant , Infant, Newborn , Causality , Cohort Studies , Infant Death , Male , California/epidemiology
5.
Am J Hum Genet ; 109(9): 1605-1619, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36007526

ABSTRACT

Newborn screening (NBS) dramatically improves outcomes in severe childhood disorders by treatment before symptom onset. In many genetic diseases, however, outcomes remain poor because NBS has lagged behind drug development. Rapid whole-genome sequencing (rWGS) is attractive for comprehensive NBS because it concomitantly examines almost all genetic diseases and is gaining acceptance for genetic disease diagnosis in ill newborns. We describe prototypic methods for scalable, parentally consented, feedback-informed NBS and diagnosis of genetic diseases by rWGS and virtual, acute management guidance (NBS-rWGS). Using established criteria and the Delphi method, we reviewed 457 genetic diseases for NBS-rWGS, retaining 388 (85%) with effective treatments. Simulated NBS-rWGS in 454,707 UK Biobank subjects with 29,865 pathogenic or likely pathogenic variants associated with 388 disorders had a true negative rate (specificity) of 99.7% following root cause analysis. In 2,208 critically ill children with suspected genetic disorders and 2,168 of their parents, simulated NBS-rWGS for 388 disorders identified 104 (87%) of 119 diagnoses previously made by rWGS and 15 findings not previously reported (NBS-rWGS negative predictive value 99.6%, true positive rate [sensitivity] 88.8%). Retrospective NBS-rWGS diagnosed 15 children with disorders that had been undetected by conventional NBS. In 43 of the 104 children, had NBS-rWGS-based interventions been started on day of life 5, the Delphi consensus was that symptoms could have been avoided completely in seven critically ill children, mostly in 21, and partially in 13. We invite groups worldwide to refine these NBS-rWGS conditions and join us to prospectively examine clinical utility and cost effectiveness.


Subject(s)
Neonatal Screening , Precision Medicine , Child , Critical Illness , Genetic Testing/methods , Humans , Infant, Newborn , Neonatal Screening/methods , Retrospective Studies
6.
Nat Commun ; 13(1): 4057, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882841

ABSTRACT

While many genetic diseases have effective treatments, they frequently progress rapidly to severe morbidity or mortality if those treatments are not implemented immediately. Since front-line physicians frequently lack familiarity with these diseases, timely molecular diagnosis may not improve outcomes. Herein we describe Genome-to-Treatment, an automated, virtual system for genetic disease diagnosis and acute management guidance. Diagnosis is achieved in 13.5 h by expedited whole genome sequencing, with superior analytic performance for structural and copy number variants. An expert panel adjudicated the indications, contraindications, efficacy, and evidence-of-efficacy of 9911 drug, device, dietary, and surgical interventions for 563 severe, childhood, genetic diseases. The 421 (75%) diseases and 1527 (15%) effective interventions retained are integrated with 13 genetic disease information resources and appended to diagnostic reports ( https://gtrx.radygenomiclab.com ). This system provided correct diagnoses in four retrospectively and two prospectively tested infants. The Genome-to-Treatment system facilitates optimal outcomes in children with rapidly progressive genetic diseases.


Subject(s)
DNA Copy Number Variations , Child , Humans , Infant , Retrospective Studies , Whole Genome Sequencing
7.
Acta Neurochir (Wien) ; 164(8): 2021-2034, 2022 08.
Article in English | MEDLINE | ID: mdl-35230551

ABSTRACT

BACKGROUND: Gliomas are typically considered to cause relatively few neurological impairments. However, cognitive difficulties can arise, for example during treatment, with potential detrimental effects on quality of life. Accurate, reproducible, and accessible cognitive assessment is therefore vital in understanding the effects of both tumor and treatments. Our aim is to compare traditional neuropsychological assessment with an app-based cognitive screening tool in patients with glioma before and after surgical resection. Our hypotheses were that cognitive impairments would be apparent, even in a young and high functioning cohort, and that app-based cognitive screening would complement traditional neuropsychological assessment. METHODS: Seventeen patients with diffuse gliomas completed a traditional neuropsychological assessment and an app-based touchscreen tablet assessment pre- and post-operatively. The app assessment was also conducted at 3- and 12-month follow-up. Impairment rates, mean performance, and pre- and post-operative changes were compared using standardized Z-scores. RESULTS: Approximately 2-3 h of traditional assessment indicated an average of 2.88 cognitive impairments per patient, while the 30-min screen indicated 1.18. As might be expected, traditional assessment using multiple items across the difficulty range proved more sensitive than brief screening measures in areas such as memory and attention. However, the capacity of the screening app to capture reaction times enhanced its sensitivity, relative to traditional assessment, in the area of non-verbal function. Where there was overlap between the two assessments, for example digit span tasks, the results were broadly equivalent. CONCLUSIONS: Cognitive impairments were common in this sample and app-based screening complemented traditional neuropsychological assessment. Implications for clinical assessment and follow-up are discussed.


Subject(s)
Brain Neoplasms , Cognition Disorders , Glioma , Mobile Applications , Brain Neoplasms/complications , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Cognition , Cognition Disorders/etiology , Glioma/complications , Glioma/diagnosis , Glioma/surgery , Humans , Neuropsychological Tests , Quality of Life
8.
Prenat Diagn ; 42(6): 705-716, 2022 05.
Article in English | MEDLINE | ID: mdl-35141907

ABSTRACT

OBJECTIVE: To determine which types of fetal anomalies are associated with postnatal diagnoses of genetic diseases by genomic sequencing and to assess how prenatal genomic sequencing could affect clinical management. METHOD: This was a secondary analysis of the second Newborn Sequencing in Genomic Medicine and Public Health study that compared fetal imaging results in critically ill infants who had actionable versus negative postnatal genomic sequencing results. RESULTS: Of 213 infants who received genomic sequencing, 80 had available prenatal ultrasounds. Twenty-one (26%) of these were found to have genetic diseases by genomic sequencing. Fourteen (67%) of the 21 with genetic diseases had suspected anomalies prenatally, compared with 33 (56%) of 59 with negative results. Among fetuses with suspected anomalies, genetic diseases were 4.5 times more common in those with multiple anomalies and 6.7 times more common in those with anomalies of the extremities compared to those with negative results. Had the genetic diseases been diagnosed prenatally, clinical management would have been altered in 13 of 14. CONCLUSION: Critically ill infants with diagnostic genomic sequencing were more likely to have multiple anomalies and anomalies of the extremities on fetal imaging. Among almost all infants with suspected fetal anomalies and diagnostic genomic sequencing results, prenatal diagnosis would have likely altered clinical management.


Subject(s)
Abnormalities, Multiple , Critical Illness , Abnormalities, Multiple/diagnosis , Female , Fetus/abnormalities , Fetus/diagnostic imaging , Genomics , Humans , Infant , Infant, Newborn , Pregnancy , Prenatal Diagnosis/methods , Retrospective Studies , Ultrasonography, Prenatal/methods
9.
J Matern Fetal Neonatal Med ; 35(25): 8998-9005, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34852708

ABSTRACT

OBJECTIVES: Many studies of sudden unexpected infant death (SUID) have focused on individual domains of risk factors (maternal, infant, and environmental), resulting in limited capture of this multifactorial outcome. The objective of this study was to examine the geographic distribution of SUID in San Diego County, and assess maternal, infant, and environmental risk factors from a large, administrative research platform. STUDY DESIGN: Births in California between 2005 and 2017 were linked to hospital discharge summaries and death files. From this retrospective birth cohort, cases of SUID were identified from infant death files in San Diego County. We estimated adjusted hazard ratios (aHRs) for infant, maternal, and environmental factors and SUID in multivariable Cox regression analysis. Models were adjusted for maternal sociodemographic characteristics and prenatal nicotine exposure. RESULTS: There were 211 (44/100,000 live births; absolute risk 0.04%) infants with a SUID among 484,905 live births. There was heterogeneity in geographic distribution of cases. Multiparity (0.05%; aHR 1.4, 95% confidence interval (CI) 1.1, 1.9), maternal depression (0.11%; aHR 1.8, 95% CI 1.0, 3.4), substance-related diagnoses (0.27%; aHR 2.3, 95% CI 1.3, 3.8), cannabis-related diagnosis (0.35%; aHR 2.7, 95% CI 1.5, 5.0), prenatal nicotine use (0.23%; aHR 2.5, 95% CI 1.5, 4.2), preexisting hypertension (0.11%; aHR 2.3, 95% CI 1.2, 4.3), preterm delivery (0.09%; aHR 2.1, 95% CI 1.5, 3.0), infant with a major malformation (0.09%; aHR 2.0, 95% CI 1.1, 3.6), respiratory distress syndrome (0.12%; aHR 2.6, 95% CI 1.5, 4.6), and select environmental factors were all associated with SUID. CONCLUSIONS: Multiple risk factors were confirmed and expanded upon, and the geographic distribution for SUID in San Diego County was identified. Through this approach, prevention efforts can be targeted to geographies that would benefit the most.


Subject(s)
Nicotine , Sudden Infant Death , Infant , Infant, Newborn , Pregnancy , Female , Humans , Retrospective Studies , Sudden Infant Death/epidemiology , Sudden Infant Death/etiology , Cohort Studies , Infant Mortality , Risk Factors
10.
J Neurosurg ; 136(2): 358-368, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34359041

ABSTRACT

OBJECTIVE: The aim of this study was to test brain tumor interactions with brain networks, thereby identifying protective features and risk factors for memory recovery after resection. METHODS: Seventeen patients with diffuse nonenhancing glioma (ages 22-56 years) underwent longitudinal MRI before and after surgery, and during a 12-month recovery period (47 MRI scans in total after exclusion). After each scanning session, a battery of memory tests was performed using a tablet-based screening tool, including free verbal memory, overall verbal memory, episodic memory, orientation, forward digit span, and backward digit span. Using structural MRI and neurite orientation dispersion and density imaging (NODDI) derived from diffusion-weighted images, the authors estimated lesion overlap and neurite density, respectively, with brain networks derived from normative data in healthy participants (somatomotor, dorsal attention, ventral attention, frontoparietal, and default mode network [DMN]). Linear mixed-effect models (LMMs) that regressed out the effect of age, gender, tumor grade, type of treatment, total lesion volume, and total neurite density were used to test the potential longitudinal associations between imaging markers and memory recovery. RESULTS: Memory recovery was not significantly associated with either the tumor location based on traditional lobe classification or the type of treatment received by patients (i.e., surgery alone or surgery with adjuvant chemoradiotherapy). Nonlocal effects of tumors were evident on neurite density, which was reduced not only within the tumor but also beyond the tumor boundary. In contrast, high preoperative neurite density outside the tumor but within the DMN was associated with better memory recovery (LMM, p value after false discovery rate correction [Pfdr] < 10-3). Furthermore, postoperative and follow-up neurite density within the DMN and frontoparietal network were also associated with memory recovery (LMM, Pfdr = 0.014 and Pfdr = 0.001, respectively). Preoperative tumor and postoperative lesion overlap with the DMN showed a significant negative association with memory recovery (LMM, Pfdr = 0.002 and Pfdr < 10-4, respectively). CONCLUSIONS: Imaging biomarkers of cognitive recovery and decline can be identified using NODDI and resting-state networks. Brain tumors and their corresponding treatment affecting brain networks that are fundamental for memory functioning such as the DMN can have a major impact on patients' memory recovery.


Subject(s)
Brain Neoplasms , Glioma , Adult , Brain , Brain Mapping , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Cognition , Default Mode Network , Glioma/diagnostic imaging , Glioma/surgery , Humans , Magnetic Resonance Imaging , Middle Aged , Neurites , Young Adult
11.
J Neurol Neurosurg Psychiatry ; 92(11): 1186-1196, 2021 11.
Article in English | MEDLINE | ID: mdl-34103343

ABSTRACT

BACKGROUND: We used a multimodal approach including detailed phenotyping, whole exome sequencing (WES) and candidate gene filters to diagnose rare neurological diseases in individuals referred by tertiary neurology centres. METHODS: WES was performed on 66 individuals with neurogenetic diseases using candidate gene filters and stringent algorithms for assessing sequence variants. Pathogenic or likely pathogenic missense variants were interpreted using in silico prediction tools, family segregation analysis, previous publications of disease association and relevant biological assays. RESULTS: Molecular diagnosis was achieved in 39% (n=26) including 59% of childhood-onset cases and 27% of late-onset cases. Overall, 37% (10/27) of myopathy, 41% (9/22) of neuropathy, 22% (2/9) of MND and 63% (5/8) of complex phenotypes were given genetic diagnosis. Twenty-seven disease-associated variants were identified including ten novel variants in FBXO38, LAMA2, MFN2, MYH7, PNPLA6, SH3TC2 and SPTLC1. Single-nucleotide variants (n=10) affected conserved residues within functional domains and previously identified mutation hot-spots. Established pathogenic variants (n=16) presented with atypical features, such as optic neuropathy in adult polyglucosan body disease, facial dysmorphism and skeletal anomalies in cerebrotendinous xanthomatosis, steroid-responsive weakness in congenital myasthenia syndrome 10. Potentially treatable rare diseases were diagnosed, improving the quality of life in some patients. CONCLUSIONS: Integrating deep phenotyping, gene filter algorithms and biological assays increased diagnostic yield of exome sequencing, identified novel pathogenic variants and extended phenotypes of difficult to diagnose rare neurogenetic disorders in an outpatient clinic setting.


Subject(s)
Exome Sequencing , Genetic Diseases, Inborn/diagnosis , Mutation , Nervous System Diseases/diagnosis , Rare Diseases/diagnosis , Adolescent , Adult , Aged , Genetic Diseases, Inborn/genetics , Humans , Middle Aged , Molecular Diagnostic Techniques , Nervous System Diseases/genetics , Pedigree , Phenotype , Rare Diseases/genetics , Young Adult
13.
Article in English | MEDLINE | ID: mdl-34117075

ABSTRACT

Rapid whole-genome sequencing (rWGS) has shown that genetic diseases are a common cause of infant mortality in neonatal intensive care units. Dried blood spots collected for newborn screening allow investigation of causes of infant mortality that were not diagnosed during life. Here, we present a neonate who developed seizures and encephalopathy on the third day of life that was refractory to antiepileptic medications. The patient died on day of life 16 after progressive respiratory failure and sepsis. The parents had lost two prior children after similar presentations, neither of whom had a definitive diagnosis. Postmortem rWGS of a dried blood spot identified a pathogenic homozygous frameshift variant in the SUOX gene associated with isolated sulfite oxidase deficiency (c.1390_1391del, p.Leu464GlyfsTer10). This case highlights that early, accurate molecular diagnosis has the potential to influence prenatal counseling and guide management in rare, genetic disorders and has added importance in cases of a strong family history and risk factors such as consanguinity.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Homozygote , Oxidoreductases Acting on Sulfur Group Donors/genetics , Sulfite Oxidase/deficiency , Whole Genome Sequencing , Amino Acid Metabolism, Inborn Errors/cerebrospinal fluid , Amino Acid Metabolism, Inborn Errors/pathology , Cerebral Cortex , Child, Preschool , Consanguinity , Female , Frameshift Mutation , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Middle Aged , Pedigree , Pregnancy , Seizures , Sulfite Oxidase/cerebrospinal fluid , Sulfite Oxidase/genetics
14.
Acta Neurochir (Wien) ; 163(5): 1299-1309, 2021 05.
Article in English | MEDLINE | ID: mdl-33222010

ABSTRACT

BACKGROUND: Intraoperative functional mapping with direct electrical stimulation during awake surgery for patients with diffuse low-grade glioma has been used in recent years to optimize the balance between surgical resection and quality of life following surgery. Mapping of executive functions is particularly challenging because of their complex nature, with only a handful of reports published so far. Here, we propose the recording of neural activity directly from the surface of the brain using electrocorticography to map executive functions and demonstrate its feasibility and potential utility. METHODS: To track a neural signature of executive function, we recorded neural activity using electrocorticography during awake surgery from the frontal cortex of three patients judged to have an appearance of diffuse low-grade glioma. Based on existing functional magnetic resonance imaging (fMRI) evidence from healthy participants for the recruitment of areas associated with executive function with increased task demands, we employed a task difficulty manipulation in two counting tasks performed intraoperatively. Following surgery, the data were extracted and analyzed offline to identify increases in broadband high-gamma power with increased task difficulty, equivalent to fMRI findings, as a signature of activity related to executive function. RESULTS: All three patients performed the tasks well. Data were recorded from five electrode strips, resulting in data from 15 channels overall. Eleven out of the 15 channels (73.3%) showed significant increases in high-gamma power with increased task difficulty, 26.6% of the channels (4/15) showed no change in power, and none of the channels showed power decrease. High-gamma power increases with increased task difficulty were more likely in areas that are within the canonical frontoparietal network template. CONCLUSIONS: These results are the first step toward developing electrocorticography as a tool for mapping of executive function complementarily to direct electrical stimulation to guide resection. Further studies are required to establish this approach for clinical use.


Subject(s)
Brain Mapping , Brain Neoplasms/physiopathology , Brain Neoplasms/surgery , Electrocorticography , Executive Function , Glioma/physiopathology , Glioma/surgery , Intraoperative Care , Adult , Brain Neoplasms/diagnostic imaging , Cognition/physiology , Electric Stimulation , Female , Gamma Rhythm/physiology , Glioma/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Quality of Life
15.
NPJ Genom Med ; 5: 49, 2020.
Article in English | MEDLINE | ID: mdl-33154820

ABSTRACT

Understanding causes of infant mortality shapes public health policy and prioritizes diseases for investments in surveillance, intervention and medical research. Rapid genomic sequencing has created a novel opportunity to decrease infant mortality associated with treatable genetic diseases. Herein, we sought to measure the contribution of genetic diseases to mortality among infants by secondary analysis of babies enrolled in two clinical studies and a systematic literature review. Among 312 infants who had been admitted to an ICU at Rady Children's Hospital between November 2015 and September 2018 and received rapid genomic sequencing, 30 (10%) died in infancy. Ten (33%) of the infants who died were diagnosed with 11 genetic diseases. The San Diego Study of Outcomes in Mothers and Infants platform identified differences between in-hospital and out-of-hospital causes of infant death. Similarly, in six published studies, 195 (21%) of 918 infant deaths were associated with genetic diseases by genomic sequencing. In 195 infant deaths associated with genetic diseases, locus heterogeneity was 70%. Treatment guidelines existed for 70% of the genetic diseases diagnosed, suggesting that rapid genomic sequencing has substantial potential to decrease infant mortality among infants in ICUs. Further studies are needed in larger, comprehensive, unbiased patient sets to determine the generalizability of these findings.

16.
World Neurosurg ; 137: e126-e137, 2020 05.
Article in English | MEDLINE | ID: mdl-31958585

ABSTRACT

BACKGROUND: A plethora of cutting-edge neuroimaging analyses have been developed and published, yet they have not hitherto been realized as improvements in neurosurgical outcomes. In this paper we propose a novel interface between neuroimaging and neurosurgery for aiding translational research. Our objective is to create a method for applying advanced neuroimaging and network analysis findings to neurosurgery and illustrate its application through the presentation of 2 detailed case vignettes. METHODS: This interface comprises a combination of network visualization, 3-dimensional printing, and ex-vivo neuronavigation to enable preoperative planning according to functional neuroanatomy. Clinical cases were selected from a prospective cohort study. RESULTS: The first case vignette describes a low-grade glioma with potential language and executive function network involvement that underwent a successful complete resection of the lesion with preservation of network features. The second case describes a low-grade glioma in an apparently noneloquent location that underwent a subtotal resection but demonstrated unexpected and significant impairment in executive function postoperatively that subsequently abated during follow-up. In both examples the neuroimaging and network data highlight the complexity of the surrounding functional neuroanatomy at the individual level, beyond that which can be perceived on standard structural sequences. CONCLUSIONS: The described interface has widespread applications for translational research including preoperative planning, neurosurgical training, and detailed patient counseling. A protocol for assessing its effectiveness and safety is proposed. Finally, recommendations for effective translation of findings from neuroimaging to neurosurgery are discussed, with the aim of making clinically meaningful improvements to neurosurgical practice.


Subject(s)
Brain Neoplasms/surgery , Glioma/surgery , Neural Pathways/surgery , Neuronavigation , Printing, Three-Dimensional , Brain Mapping/methods , Brain Neoplasms/pathology , Female , Glioma/pathology , Humans , Male , Neural Pathways/pathology , Neuroimaging/methods , Neuronavigation/methods
17.
J Pediatr ; 164(5): 1121-1127.e1, 2014 May.
Article in English | MEDLINE | ID: mdl-24367983

ABSTRACT

OBJECTIVE: To investigate the relationship between tissue-specific alterations in brain volume and neurobehavioral status in newborns with complex congenital heart defects preoperatively. STUDY DESIGN: Three-dimensional volumetric magnetic resonance imaging was used to calculate tissue-specific brain volumes and a standardized neurobehavioral assessment was performed to assess neurobehavioral status in 35 full-term newborns admitted to the hospital before cardiopulmonary bypass surgery. Multiple linear regression models were performed to evaluate relationships between neurobehavioral status and brain volumes. RESULTS: Reduced subcortical gray matter (SCGM) volume and increased cerebrospinal fluid (CSF) volume were associated with poor behavioral state regulation (SCGM, P = .04; CSF, P = .007) and poor visual orienting (CSF, P = .003). In cyanotic newborns, reduced SCGM was associated with higher overall abnormal scores on the assessment (P = .001) and poor behavioral state regulation (P = .04), and increased CSF volume was associated with poor behavioral state regulation (P = .02), and poor visual orienting (P = .02). Conversely, acyanotic newborns showed associations between reduced cerebellar volume and poor behavioral state regulation (P = .03). CONCLUSION: Abnormal neurobehavior is associated with impaired volumetric brain growth before open heart surgery in infants with complex congenital heart defects. This study highlights a need for routine preoperative screening and early intervention to improve neurodevelopmental outcomes.


Subject(s)
Brain Injuries/etiology , Brain/pathology , Heart Defects, Congenital/complications , Infant Behavior , Brain Injuries/diagnosis , Cardiopulmonary Bypass , Female , Heart Defects, Congenital/pathology , Heart Defects, Congenital/psychology , Heart Defects, Congenital/surgery , Humans , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Infant, Newborn , Linear Models , Magnetic Resonance Imaging , Male , Neurologic Examination , Neuropsychological Tests , Observer Variation , Organ Size , Preoperative Period , Prospective Studies , Single-Blind Method
18.
J Child Neurol ; 26(6): 743-55, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21610172

ABSTRACT

Newborns with complex congenital heart defects are at high risk for developing neurological abnormalities. It is important to understand the timing, progression, and extent of these abnormalities to better elucidate their potential impact on neurodevelopment, and their implications for early screening and intervention. This review synthesizes the recent literature describing neurological and neurobehavioral abnormalities observed in fetuses and newborns before cardiac surgery. A considerable proportion of newborns with complex congenital heart defects exhibit neurobehavioral and electrophysiological abnormalities preoperatively. Likewise, conventional neuroimaging studies reported that a high percentage of this population experienced brain injury. Advanced neuroimaging modalities indicated that fetuses showed delayed third trimester brain growth, and newborns showed impaired white matter maturation, reduced N-acetylaspartate, and increased lactate. These findings suggest a fetal or early postnatal onset of impaired brain growth and development. Consequently, reliable methods for early screening and subsequent developmental intervention must be implemented.


Subject(s)
Brain Waves/physiology , Brain/physiopathology , Heart Defects, Congenital/pathology , Databases, Factual/statistics & numerical data , Diagnostic Imaging , Electroencephalography , Fetus , Heart Defects, Congenital/surgery , Humans , Infant, Newborn , Thoracic Surgery/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...