Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Urol Res ; 38(6): 491-5, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20967437

ABSTRACT

The success of surgical management of lower pole stones is principally dependent on stone fragmentation and residual stone clearance. Choice of surgical method depends on stone size, yet all methods are subjected to post-surgical complications resulting from residual stone fragments. Here we present a novel method and device to reposition kidney stones using ultrasound radiation force delivered by focused ultrasound and guided by ultrasound imaging. The device couples a commercial imaging array with a focused annular array transducer. Feasibility of repositioning stones was investigated by implanting artificial and human stones into a kidney-mimicking phantom that simulated a lower pole and collecting system. During experiment, stones were located by ultrasound imaging and repositioned by delivering short bursts of focused ultrasound. Stone motion was concurrently monitored by fluoroscopy, ultrasound imaging, and video photography, from which displacement and velocity were estimated. Stones were seen to move immediately after delivering focused ultrasound and successfully repositioned from the lower pole to the collecting system. Estimated velocities were on the order of 1 cm/s. This in vitro study demonstrates a promising modality to facilitate spontaneous clearance of kidney stones and increased clearance of residual stone fragments after surgical management.


Subject(s)
Kidney Calculi/diagnostic imaging , Fluoroscopy , Humans , Kidney Calculi/surgery , Ultrasonography
2.
IEEE Trans Biomed Eng ; 57(1): 80-92, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19497808

ABSTRACT

Unresectable liver tumors are often treated with interstitial probes that modify tissue temperature, and efficacious treatment relies on image guidance for tissue targeting and assessment. Here, we report the in vivo evaluation of an interstitial applicator with a mechanically oscillating five-element dual-mode transducer. After thoroughly characterizing the transducer, tissue response to high-intensity ultrasound was numerically calculated to select parameters for experimentation in vivo. Using perfused porcine liver, B-mode sector images were formed before and after a 120-s therapy period, and M-mode imaging monitored the therapy axis during therapy. The time-averaged transducer surface intensity was 21 or 27 W/cm (2). Electroacoustic conversion efficiency was maximally 72 +/- 3% and impulse response length was 295 +/- 1.0 ns at -6 dB. The depth of thermal damage measured by gross histology ranged from 10 to 25 mm for 13 insertion sites. For six sites, M-mode data exhibited a reduction in gray-scale intensity that was interpreted as the temporal variation of coagulation necrosis. Contrast ratio analysis indicated that the gray-scale intensity dropped by 7.8 +/- 3.3 dB, and estimated the final lesion depth to an accuracy of 2.3 +/- 2.4 mm. This paper verified that the applicator could induce coagulation necrosis in perfused liver and demonstrated the feasibility of real-time monitoring.


Subject(s)
High-Intensity Focused Ultrasound Ablation/instrumentation , Liver/diagnostic imaging , Animals , Computer Simulation , Electronics, Medical , Equipment Design , High-Intensity Focused Ultrasound Ablation/methods , Liver/pathology , Oscillometry , Swine , Transducers , Ultrasonography
3.
Ultrasonics ; 49(2): 172-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18796342

ABSTRACT

Miniature flat ultrasound transducers have shown to be effective for a large variety of thermal therapies, but the associated superficial heating implicates developing original strategies in order to extend therapeutic depth. The goal of the present paper is to use ultrasound contrast agents (UCA) to increase remote attenuation and heating. Theoretical simulations demonstrated that increasing attenuation from 0.27 to 0.8 Np/cm at 10 MHz beyond a distance of 18 mm from the transducer should result in longer thermal damages due to protein coagulation in a tissue mimicking phantom. Contrast agents (BR14, Bracco, Plan-les-Ouates, Switzerland) were embedded in thermo-sensitive gel and attenuations ranging from 0.27 to 1.33 Np/cm were measured at 10 MHz for concentrations of BR14 between 0 and 4.8%. Thermal damages were then induced in several gels, which had different layering configurations. Thermal damages, 12.8mm in length, were obtained in homogeneous gels. When mixing contrast agents at a concentration of 3.2% beyond a first 18 mm-thick layer of homogeneous gel, the thermal damages reached 21.5mm in length. This work demonstrated that contrast agents can be used for increasing attenuation remotely and extending therapeutic depth induced by a non-focused transducer. Additional work must be done in vivo in order to verify the remote-only distribution of bubbles and associated increase in attenuation.


Subject(s)
Catheter Ablation/methods , Fluorocarbons/chemistry , Phospholipids/chemistry , Transducers , Ultrasonic Therapy/instrumentation , Ultrasonic Therapy/methods , Feasibility Studies , Gels , Models, Theoretical , Phantoms, Imaging
4.
J Acoust Soc Am ; 121(1): EL41-7, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17297825

ABSTRACT

There is currently little feedback as to whether kidney stones have fractured during shock wave lithotripsy. Resonant scattering of the lithotripter shock wave was used here to differentiate intact and fractured stone models in water. Scattering, including reflection and radiation due to reverberation from within the stone, was calculated numerically with linear elasticity theory and agreed well with measurements made with a focused receiver. Identification of fracture was possible through frequency analysis, where scatter from fractured stones was characterized by higher energy in distinct bands. High-speed photography concurrent with measurement indicated the effect was not due to cavitation.


Subject(s)
Acoustics , Kidney Calculi/therapy , Lithotripsy , Models, Theoretical , Humans , In Vitro Techniques
5.
Article in English | MEDLINE | ID: mdl-16555774

ABSTRACT

Ultrasound imaging is useful for monitoring high-intensity, focused ultrasound (HIFU) therapy; however, interference on the ultrasound image, caused by HIFU excitation, must be avoided. A method to synchronize HIFU excitation with ultrasound imaging is described here. Synchronization was tested with two unmodified, commercial imagers and two tissue phantoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...