Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5127, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620348

ABSTRACT

The phase separation dynamics in graphitic anodes significantly affects lithium plating propensity, which is the major degradation mechanism that impairs the safety and fast charge capabilities of automotive lithium-ion batteries. In this study, we present comprehensive investigation employing operando high-resolution optical microscopy combined with non-equilibrium thermodynamics implemented in a multi-dimensional (1D+1D to 3D) phase-field modeling framework to reveal the rate-dependent spatial dynamics of phase separation and plating in graphite electrodes. Here we visualize and provide mechanistic understanding of the multistage phase separation, plating, inter/intra-particle lithium exchange and plated lithium back-intercalation phenomena. A strong dependence of intra-particle lithiation heterogeneity on the particle size, shape, orientation, surface condition and C-rate at the particle level is observed, which leads to early onset of plating spatially resolved by a 3D image-based phase-field model. Moreover, we highlight the distinct relaxation processes at different state-of-charges (SOCs), wherein thermodynamically unstable graphite particles undergo a drastic intra-particle lithium redistribution and inter-particle lithium exchange at intermediate SOCs, whereas the electrode equilibrates much slower at low and high SOCs. These physics-based insights into the distinct SOC-dependent relaxation efficiency provide new perspective towards developing advanced fast charge protocols to suppress plating and shorten the constant voltage regime.

2.
Article in English | MEDLINE | ID: mdl-36892017

ABSTRACT

The zinc-ion battery is one of the promising candidates for next-generation energy storage devices beyond lithium technology due to the earth's abundance of Zn materials and their high volumetric energy density (5855 mA h cm-3). To date, the formation of Zn dendrites during charge-discharge cycling still hinders the practical application of zinc-ion batteries. It is, therefore, crucial to understand the formation mechanism of the zinc dendritic structure before effectively suppressing its growth. Here, the application of operando digital optical microscopy and in situ lab-based X-ray computed tomography (X-ray CT) is demonstrated to probe and quantify the morphologies of zinc electrodeposition/dissolution under multiple galvanostatic plating/stripping conditions in symmetric Zn||Zn cells. With the combined microscopy approaches, we directly observed the dynamic nucleation and subsequent growth of Zn deposits, the heterogeneous transportation of charged clusters/particles, and the evolution of 'dead' Zn particles via partial dissolution. Zn electrodeposition at the early stage is mainly attributed to activation, while the subsequent dendrite growth is driven by diffusion. The high current not only facilitates the formation of sharp dendrites with a larger mean curvature at their tips but also leads to dendritic tip splitting and the creation of a hyper-branching morphology. This approach offers a direct opportunity to characterize dendrite formation in batteries with a metal anode in the laboratory.

3.
ACS Appl Mater Interfaces ; 14(1): 2092-2101, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34964620

ABSTRACT

The electrode drying process (DP) is a crucial step in the lithium-ion battery manufacturing chain and plays a fundamental role in governing the performance of the cells. The DP is extremely complex, with the dynamics and their implication in the production of electrodes generally being poorly understood. To date, there is limited discussion of these processes in the literature due to the limitation of the existing in situ metrology. Here, ultrasound acoustic measurements are demonstrated as a promising tool to monitor the physical evolution of the electrode coating in situ. These observations are validated by gravimetric analysis to show the feasibility of the technique to monitor the DP and identify the three different drying stages. A possible application of this technique is to adjust the drying rates based upon the ultrasound readings at different drying stages and to speed up the drying time. These findings prove that this measurement can be used as a cost-effective and simple tool to provide characteristic diagnostics of the electrode, which can be applied in large-scale coating manufacturing.

4.
ACS Appl Mater Interfaces ; 13(30): 36605-36620, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34293855

ABSTRACT

The electrode drying process is a crucial step in the manufacturing of lithium-ion batteries and can significantly affect the performance of an electrode once stacked in a cell. High drying rates may induce binder migration, which is largely governed by the temperature. Additionally, elevated drying rates will result in a heterogeneous distribution of the soluble and dispersed binder throughout the electrode, potentially accumulating at the surface. The optimized drying rate during the electrode manufacturing process will promote balanced homogeneous binder distribution throughout the electrode film; however, there is a need to develop more informative in situ metrologies to better understand the dynamics of the drying process. Here, ultrasound acoustic-based techniques were developed as an in situ tool to study the electrode drying process using NMC622-based cathodes and graphite-based anodes. The drying dynamic evolution for cathodes dried at 40 and 60 °C and anodes dried at 60 °C were investigated, with the attenuation of the reflective acoustic signals used to indicate the evolution of the physical properties of the electrode-coating film. The drying-induced acoustic signal shifts were discussed critically and correlated to the reported three-stage drying mechanism, offering a new mode for investigating the dynamic drying process. Ultrasound acoustic-based measurements have been successfully shown to be a novel in situ metrology to acquire dynamic drying profiles of lithium-ion battery electrodes. The findings would potentially fulfil the research gaps between acquiring dynamic data continuously for a drying mechanism study and the existing research metrology, as most of the published drying mechanism research studies are based on simulated drying processes. It shows great potential for further development and understanding of the drying process to achieve a more controllable electrode manufacturing process.

5.
ChemistryOpen ; 9(2): 242-252, 2020 02.
Article in English | MEDLINE | ID: mdl-32149034

ABSTRACT

We report on the design and testing of new graphite and graphene oxide-based extended π-conjugated synthetic scaffolds for applications in sustainable chemistry transformations. Nanoparticle-functionalised carbonaceous catalysts for new Fischer Tropsch and Reverse GasWater Shift (RGWS) transformations were prepared: functional graphene oxides emerged from graphite powders via an adapted Hummer's method and subsequently impregnated with uniform-sized nanoparticles. Then the resulting nanomaterials were imaged by TEM, SEM, EDX, AFM and characterised by IR, XPS and Raman spectroscopies prior to incorporation of Pd(II) promoters and further microscopic and spectroscopic analysis. Newly synthesised 2D and 3D layered nanostructures incorporating carbon-supported iron oxide nanoparticulate pre-catalysts were tested, upon hydrogen reduction in situ, for the conversion of CO2 to CO as well as for the selective formation of CH4 and longer chain hydrocarbons. The reduction reaction was also carried out and the catalytic species isolated and fully characterised. The catalytic activity of a graphene oxide-supported iron oxide pre-catalyst converted CO2 into hydrocarbons at different temperatures (305, 335, 370 and 405 °C), and its activity compared well with that of the analogues supported on graphite oxide, the 3-dimensional material precursor to the graphene oxide. Investigation into the use of graphene oxide as a framework for catalysis showed that it has promising activity with respect to reverse gas water shift (RWGS) reaction of CO2 to CO, even at the low levels of catalyst used and under the rather mild conditions employed at atmospheric pressure. Whilst the γ-Fe2O3 decorated graphene oxide-based pre-catalyst displays fairly constant activity up to 405 °C, it was found by GC-MS analysis to be unstable with respect to decomposition at higher temperatures. The addition of palladium as a promoter increased the activity of the iron functionalised graphite oxide in the RWGS. The activity of graphene oxide supported catalysts was found to be enhanced with respect to that of iron-functionalised graphite oxide with, or without palladium as a promoter, and comparable to that of Fe@carbon nanotube-based systems tested under analogous conditions. These results display a significant step forward for the catalytic activity estimations for the iron functionalised and rapidly processable and scalable graphene oxide. The hereby investigated phenomena are of particular relevance for the understanding of the intimate surface morphologies and the potential role of non-covalent interactions in the iron oxide-graphene oxide networks, which could inform the design of nano-materials with performance in future sustainable catalysis applications.

6.
Chemphyschem ; 18(22): 3211-3218, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-28657678

ABSTRACT

The conversion of CO2 to hydrocarbons is increasingly seen as a potential alternative source of fuel and chemicals, while at the same time contributing to addressing global warming effects. An understanding of kinetics and mass transfer limitations is vital to both optimise catalyst performance and to scale up the whole process. In this work we report on a systematic investigation of the influence of the different process parameters, including pore size, catalyst support particle diameter, reaction temperature, pressure and reactant flow rate on conversion and selectivity of iron nanoparticle -silica catalysts. The results provided on activation energy and mass transfer limitations represent the basis to fully design a reactor system for the effective catalytic conversion of CO2 to hydrocarbons.

7.
ChemSusChem ; 8(23): 4064-72, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26564267

ABSTRACT

With fossil fuels still predicted to contribute close to 80 % of the primary energy consumption by 2040, methods to limit further CO2 emissions in the atmosphere are urgently needed to avoid the catastrophic scenarios associated with global warming. In parallel with improvements in energy efficiency and CO2 storage, the conversion of CO2 has emerged as a complementary route with significant potential. In this work we present the direct thermo-catalytic conversion of CO2 to hydrocarbons using a novel iron nanoparticle-carbon nanotube (Fe@CNT) catalyst. We adopted a holistic and systematic approach to CO2 conversion by integrating process optimization-identifying reaction conditions to maximize conversion and selectivity towards long chain hydrocarbons and/or short olefins-with catalyst optimization through the addition of promoters. The result is the production of valuable hydrocarbons in a manner that can approach carbon neutrality under realistic industrial process conditions.


Subject(s)
Carbon Dioxide/chemistry , Hydrocarbons/chemistry , Alkenes/chemistry , Catalysis , Environment
8.
Chem Commun (Camb) ; 49(99): 11683-5, 2013 Dec 25.
Article in English | MEDLINE | ID: mdl-24190541

ABSTRACT

A series of cobalt heterogeneous catalysts have been developed that are effective for the conversion of CO2 to hydrocarbons. The effect of the promoter and loadings have been investigated.

9.
Chempluschem ; 78(12): 1536-1544, 2013 Dec.
Article in English | MEDLINE | ID: mdl-31986668

ABSTRACT

If CO2 hydrogenation is to become a viable process for the utilisation of CO2 , improved catalysts are urgently needed. We report the promotional effects of Group 11 and 13 metals on the performance of iron-silica catalyst systems under atmospheric pressure. The addition of low loadings of gold resulted in a significant improvement in catalyst performance both in terms of conversion and selectivity to lower (C2 -C4 ) olefins. Small loadings of indium proved highly effective for increasing CO2 conversion, whereas at higher loadings the selectivity to lower olefins could be dramatically increased. Catalysis tests involving palladium-promoted systems also proved successful with large increases in selectivity towards C5+ hydrocarbons observed. The catalysts were characterised by X-ray photoelectron spectroscopy, TEM and SEM, which confirmed the nanostructured nature of the catalytic species involved.

SELECTION OF CITATIONS
SEARCH DETAIL
...