Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Appl Clin Med Phys ; 25(4): e14259, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38317597

ABSTRACT

BACKGROUND: The treatment planning process from segmentation to producing a deliverable plan is time-consuming and labor-intensive. Existing solutions automate the segmentation and planning processes individually. The feasibility of combining auto-segmentation and auto-planning for volumetric modulated arc therapy (VMAT) for rectal cancers in an end-to-end process is not clear. PURPOSE: To create and clinically evaluate a complete end-to-end process for auto-segmentation and auto-planning of VMAT for rectal cancer requiring only the gross tumor volume contour and a CT scan as inputs. METHODS: Patient scans and data were retrospectively selected from our institutional records for patients treated for malignant neoplasm of the rectum. We trained, validated, and tested deep learning auto-segmentation models using nnU-Net architecture for clinical target volume (CTV), bowel bag, large bowel, small bowel, total bowel, femurs, bladder, bone marrow, and female and male genitalia. For the CTV, we identified 174 patients with clinically drawn CTVs. We used data for 18 patients for all structures other than the CTV. The structures were contoured under the guidance of and reviewed by a gastrointestinal (GI) radiation oncologist. The predicted results for CTV in 35 patients and organs at risk (OAR) in six patients were scored by the GI radiation oncologist using a five-point Likert scale. For auto-planning, a RapidPlan knowledge-based planning solution was modeled for VMAT delivery with a prescription of 25 Gy in five fractions. The model was trained and tested on 20 and 34 patients, respectively. The resulting plans were scored by two GI radiation oncologists using a five-point Likert scale. Finally, the end-to-end pipeline was evaluated on 16 patients, and the resulting plans were scored by two GI radiation oncologists. RESULTS: In 31 of 35 patients, CTV contours were clinically acceptable without necessary modifications. The CTV achieved a Dice similarity coefficient of 0.85 (±0.05) and 95% Hausdorff distance of 15.25 (±5.59) mm. All OAR contours were clinically acceptable without edits, except for large and small bowel which were challenging to differentiate. However, contours for total, large, and small bowel were clinically acceptable. The two physicians accepted 100% and 91% of the auto-plans. For the end-to-end pipeline, the two physicians accepted 88% and 62% of the auto-plans. CONCLUSIONS: This study demonstrated that the VMAT treatment planning technique for rectal cancer can be automated to generate clinically acceptable and safe plans with minimal human interventions.


Subject(s)
Radiotherapy, Intensity-Modulated , Rectal Neoplasms , Humans , Male , Female , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Radiotherapy Dosage , Rectal Neoplasms/radiotherapy , Rectum , Organs at Risk , Radiotherapy Planning, Computer-Assisted/methods
2.
Article in English | MEDLINE | ID: mdl-37777927

ABSTRACT

PURPOSE: A Pediatric Normal Tissue Effects in the Clinic (PENTEC) analysis of published investigations of central nervous system (CNS) subsequent neoplasms (SNs), subsequent sarcomas, and subsequent lung cancers in childhood cancer survivors who received radiation therapy (RT) was performed to estimate the effect of RT dose on the risk of SNs and the modification of this risk by host and treatment factors. METHODS AND MATERIALS: A systematic literature review was performed to identify data published from 1975 to 2022 on SNs after prior RT in childhood cancer survivors. After abstract review, usable quantitative and qualitative data were extracted from 83 studies for CNS SNs, 118 for subsequent sarcomas, and 10 for lung SNs with 4 additional studies (3 for CNS SNs and 1 for lung SNs) later added. The incidences of SNs, RT dose, age, sex, primary cancer diagnosis, chemotherapy exposure, and latent time from primary diagnosis to SNs were extracted to assess the factors influencing risk for SNs. The excess relative ratio (ERR) for developing SNs as a function of dose was analyzed using inverse-variance weighted linear regression, and the ERR/Gy was estimated. Excess absolute risks were also calculated. RESULTS: The ERR/Gy for subsequent meningiomas was estimated at 0.44 (95% CI, 0.19-0.68); for malignant CNS neoplasms, 0.15 (95% CI, 0.11-0.18); for sarcomas, 0.045 (95% CI, 0.023-0.067); and for lung cancer, 0.068 (95% CI, 0.03-0.11). Younger age at time of primary diagnosis was associated with higher risk of subsequent meningioma and sarcoma, whereas no significant effect was observed for age at exposure for risk of malignant CNS neoplasm, and insufficient data were available regarding age for lung cancer. Females had a higher risk of subsequent meningioma (odds ratio, 1.46; 95% CI, 1.22-1.76; P < .0001) relative to males, whereas no statistically significant sex difference was seen in risk of malignant CNS neoplasms, sarcoma SNs, or lung SNs. There was an association between chemotherapy receipt (specifically alkylating agents and anthracyclines) and subsequent sarcoma risk, whereas there was no clear association between specific chemotherapeutic agents and risk of CNS SNs and lung SNs. CONCLUSIONS: This PENTEC systematic review shows a significant radiation dose-response relationship for CNS SNs, sarcomas, and lung SNs. Given the linear dose response, improved conformality around the target volume that limits the high dose volume might be a promising strategy for reducing the risk of SNs after RT. Other host- and treatment-related factors such as age and chemotherapy play a significant contributory role in the development of SNs and should be considered when estimating the risk of SNs after RT among childhood cancer survivors.

3.
Article in English | MEDLINE | ID: mdl-37480885

ABSTRACT

PURPOSE: A pediatric normal tissue effects in the clinic (PENTEC) comprehensive review of patients with childhood cancer who received radiation therapy (RT) to the liver was performed to develop models that may inform RT dose constraints for the liver and improve risk forecasting of toxicities. METHODS AND MATERIALS: A systematic literature search was performed to identify published data on hepatic toxicities in children. Treatment and outcome data were extracted and used to generate normal tissue complication probability (NTCP) models. Complications from both whole and partial liver irradiation were considered. For whole liver irradiation, total body irradiation and non-total body irradiation treatments were considered, but it was assumed that the entire liver received the prescribed dose. For partial liver irradiation, only Wilms tumor flank field RT could be analyzed. However, a prescribed dose assumption could not be applied, and there was a paucity of analyzable liver dosimetry data. To associate the dose-volume exposures with the partial volume complication data from flank irradiation, liver dose-volume metrics were reconstructed for Wilms tumor flank RT using age-specific computational phantoms as a function of field laterality and superior extent of the field. RESULTS: The literature search identified 2103 investigations pertaining to hepatic sinusoidal obstructive syndrome (SOS) and liver failure in pediatric patients. All abstracts were screened, and 241 articles were reviewed in full by the study team. A model was developed to calculate the risk of developing SOS after whole liver RT. RT dose (P = .006) and receipt of nonalkylating chemotherapy (P = .01) were significant. Age <20 years at time of RT was borderline significant (P = .058). The model predicted a 2% risk of SOS with zero RT dose, 6.1% following 10 Gy, and 14.5% following 20 Gy to the whole liver (modeled as the linear-quadratic equivalent dose in 2-Gy fractions [α/ß = 3 Gy]). Patients with Wilms tumor treated with right flank RT had a higher observed rate of SOS than patients receiving left flank RT, but data were insufficient to generate an NTCP model for partial liver irradiation. From the phantom-based dose reconstructions, mean liver dose was estimated to be 2.16 ± 1.15 Gy and 6.54 ± 2.50 Gy for left and right flank RT, respectively, using T10-T11 as the superior field border and a prescription dose of 10.8 Gy (based on dose reconstruction). Data were sparse regarding rates of late liver injury after RT, which suggests low rates of severe toxicity after treatment for common pediatric malignancies. CONCLUSIONS: This pediatric normal tissue effects in the clinic (PENTEC) review provides an NTCP model to estimate the risk of hepatic SOS as a function of RT dose following whole liver RT and quantifies the range of mean liver doses from typical Wilms tumor flank irradiation fields. Patients treated with right flank RT had higher rates of SOS than patients treated with left flank RT, but data were insufficient to develop a model for partial liver irradiation. Risk of SOS was estimated to be approximately ≤6% in pediatric patients receiving whole liver doses of <10 Gy.

4.
Radiother Oncol ; 176: 118-126, 2022 11.
Article in English | MEDLINE | ID: mdl-36063983

ABSTRACT

PURPOSE: The purposes of this study were to develop and integrate a colorectal model that incorporates anatomical variations of pediatric patients into the age-scalable MD Anderson Late Effects (MDA-LE) computational phantom, and validate the model for pediatric radiation therapy (RT) dose reconstructions. METHODS: Colorectal contours were manually derived from whole-body non-contrast computed tomography (CT) scans of 114 pediatric patients (age range: 2.1-21.6 years, 74 males, 40 females). One contour was used for an anatomical template, 103 for training and 10 for testing. Training contours were used to create a colorectal principal component analysis (PCA)-based statistical shape model (SSM) to extract the population's dominant deformations. The SSM was integrated into the MDA-LE phantom. Geometric accuracy was assessed between patient-specific and SSM contours using several overlap metrics. Two alternative colorectal shapes were generated using the first 17 dominant modes of the PCA-based SSM. Dosimetric accuracy was assessed by comparing colorectal doses from test patients' CT-based RT plans (ground truth) with reconstructed doses for the mean and two alternative models in age-matched MDA-LE phantoms. RESULTS: When using all 103 PCA modes, the mean (min-max) Dice similarity coefficient, distance-to-agreement and Hausdorff distance between the patient-specific and reconstructed contours for the test patients were 0.89 (0.85-0.91), 2.1 mm (1.7-3.0), and 8.6 mm (5.7-14.3), respectively. The average percent difference between reconstructed and ground truth mean and maximum colorectal doses for the mean (alternative 1, 2) model were 6.3% (8.1%, 6.1%) and 4.4% (4.3%, 4.7%), respectively. CONCLUSIONS: We developed, validated and integrated a colorectal PCA-based SSM into the MDA-LE phantom and demonstrated its dosimetric performance for accurate pediatric RT dose reconstruction.


Subject(s)
Adult Survivors of Child Adverse Events , Cancer Survivors , Colorectal Neoplasms , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Young Adult , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/radiotherapy , Phantoms, Imaging , Radiometry/methods , Tomography, X-Ray Computed/methods
5.
Biomed Phys Eng Express ; 8(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34874300

ABSTRACT

Purpose.Radiation epidemiology studies of childhood cancer survivors treated in the pre-computed tomography (CT) era reconstruct the patients' treatment fields on computational phantoms. For such studies, the phantoms are commonly scaled to age at the time of radiotherapy treatment because age is the generally available anthropometric parameter. Several reference size phantoms are used in such studies, but reference size phantoms are only available at discrete ages (e.g.: newborn, 1, 5, 10, 15, and Adult). When such phantoms are used for RT dose reconstructions, the nearest discrete-aged phantom is selected to represent a survivor of a specific age. In this work, we (1) conducted a feasibility study to scale reference size phantoms at discrete ages to various other ages, and (2) evaluated the dosimetric impact of using exact age-scaled phantoms as opposed to nearest age-matched phantoms at discrete ages.Methods.We have adopted the University of Florida/National Cancer Institute (UF/NCI) computational phantom library for our studies. For the feasibility study, eight male and female reference size UF/NCI phantoms (5, 10, 15, and 35 years) were downscaled to fourteen different ages which included next nearest available lower discrete ages (1, 5, 10 and 15 years) and the median ages at the time of RT for Wilms' tumor (3.9 years), craniospinal (8.0 years), and all survivors (9.1 years old) in the Childhood Cancer Survivor Study (CCSS) expansion cohort treated with RT. The downscaling was performed using our in-house age scaling functions (ASFs). To geometrically validate the scaling, Dice similarity coefficient (DSC), mean distance to agreement (MDA), and Euclidean distance (ED) were calculated between the scaled and ground-truth discrete-aged phantom (unscaled UF/NCI) for whole-body, brain, heart, liver, pancreas, and kidneys. Additionally, heights of the scaled phantoms were compared with ground-truth phantoms' height, and the Centers for Disease Control and Prevention (CDC) reported 50th percentile height. Scaled organ masses were compared with ground-truth organ masses. For the dosimetric assessment, one reference size phantom and seventeen body-size dependent 5-year-old phantoms (9 male and 8 female) of varying body mass indices (BMI) were downscaled to 3.9-year-old dimensions for two different radiation dose studies. For the first study, we simulated a 6 MV photon right-sided flank field RT plan on a reference size 5-year-old and 3.9-year-old (both of healthy BMI), keeping the field size the same in both cases. Percent of volume receiving dose ≥15 Gy (V15) and the mean dose were calculated for the pancreas, liver, and stomach. For the second study, the same treatment plan, but with patient anatomy-dependent field sizes, was simulated on seventeen body-size dependent 5- and 3.9-year-old phantoms with varying BMIs. V15, mean dose, and minimum dose received by 1% of the volume (D1), and by 95% of the volume (D95) were calculated for pancreas, liver, stomach, left kidney (contralateral), right kidney, right and left colons, gallbladder, thoracic vertebrae, and lumbar vertebrae. A non-parametric Wilcoxon rank-sum test was performed to determine if the dose to organs of exact age-scaled and nearest age-matched phantoms were significantly different (p < 0.05).Results.In the feasibility study, the best DSCs were obtained for the brain (median: 0.86) and whole-body (median: 0.91) while kidneys (median: 0.58) and pancreas (median: 0.32) showed poorer agreement. In the case of MDA and ED, whole-body, brain, and kidneys showed tighter distribution and lower median values as compared to other organs. For height comparison, the overall agreement was within 2.8% (3.9 cm) and 3.0% (3.2 cm) of ground-truth UF/NCI and CDC reported 50th percentile heights, respectively. For mass comparison, the maximum percent and absolute differences between the scaled and ground-truth organ masses were within 31.3% (29.8 g) and 211.8 g (16.4%), respectively (across all ages). In the first dosimetric study, absolute difference up to 6% and 1.3 Gy was found for V15and mean dose, respectively. In the second dosimetric study, V15and mean dose were significantly different (p < 0.05) for all studied organs except the fully in-beam organs. D1and D95were not significantly different for most organs (p > 0.05).Conclusion.We have successfully evaluated our ASFs by scaling UF/NCI computational phantoms from one age to another age, which demonstrates the feasibility of scaling any CT-based anatomy. We have found that dose to organs of exact age-scaled and nearest aged-matched phantoms are significantly different (p < 0.05) which indicates that using the exact age-scaled phantoms for retrospective dosimetric studies is a better approach.


Subject(s)
Photons , Radiometry , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Phantoms, Imaging , Radiometry/methods , Retrospective Studies , Tomography, X-Ray Computed
6.
Radiother Oncol ; 163: 199-208, 2021 10.
Article in English | MEDLINE | ID: mdl-34454975

ABSTRACT

BACKGROUND AND PURPOSE: We previously evaluated late cardiac disease in long-term survivors in the Childhood Cancer Survivor Study (CCSS) based on heart radiation therapy (RT) doses estimated from an age-scaled phantom with a simple atlas-based heart model (HAtlas). We enhanced our phantom with a high-resolution CT-based anatomically realistic and validated age-scalable cardiac model (HHybrid). We aimed to evaluate how this update would impact our prior estimates of RT-related late cardiac disease risk in the CCSS cohort. METHODS: We evaluated 24,214 survivors from the CCSS diagnosed from 1970 to 1999. RT fields were reconstructed on an age-scaled phantom with HHybrid and mean heart dose (Dm), percent volume receiving ≥ 20 Gy (V20) and ≥ 5 Gy with V20 = 0 ( [Formula: see text] ) were calculated. We reevaluated cumulative incidences and adjusted relative rates of grade 3-5 Common Terminology Criteria for Adverse Events outcomes for any cardiac disease, coronary artery disease (CAD), and heart failure (HF) in association with Dm, V20, and [Formula: see text] (as categorical variables). Dose-response relationships were evaluated using piecewise-exponential models, adjusting for attained age, sex, cancer diagnosis age, race/ethnicity, time-dependent smoking history, diagnosis year, and chemotherapy exposure and doses. For relative rates, Dm was also considered as a continuous variable. RESULTS: Consistent with previous findings with HAtlas, reevaluation using HHybrid dosimetry found that, Dm ≥ 10 Gy, V20 ≥ 0.1%, and [Formula: see text]  ≥ 50% were all associated with increased cumulative incidences and relative rates for any cardiac disease, CAD, and HF. While updated risk estimates were consistent with previous estimates overall without statistically significant changes, there were some important and significant (P < 0.05) increases in risk with updated dosimetry for Dm in the category of 20 to 29.9 Gy and V20 in the category of 30% to 79.9%. When changes in the linear dose-response relationship for Dm were assessed, the slopes of the dose response were steeper (P < 0.001) with updated dosimetry. Changes were primarily observed among individuals with chest-directed RT with prescribed doses ≥ 20 Gy. CONCLUSION: These findings present a methodological advancement in heart RT dosimetry with improved estimates of RT-related late cardiac disease risk. While results are broadly consistent with our prior study, we report that, with updated cardiac dosimetry, risks of cardiac disease are significantly higher in two dose and volume categories and slopes of the Dm-specific RT-response relationships are steeper. These data support the use of contemporary RT to achieve lower heart doses for pediatric patients, particularly those requiring chest-directed RT.


Subject(s)
Cancer Survivors , Heart Diseases , Neoplasms , Child , Heart Diseases/epidemiology , Heart Diseases/etiology , Humans , Neoplasms/epidemiology , Neoplasms/radiotherapy , Radiometry , Survivors
7.
Sci Rep ; 11(1): 3973, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597610

ABSTRACT

Radiomics involves high-throughput extraction of large numbers of quantitative features from medical images and analysis of these features to predict patients' outcome and support clinical decision-making. However, radiomics features are sensitive to several factors, including scanning protocols. The purpose of this study was to investigate the robustness of magnetic resonance imaging (MRI) radiomics features with various MRI scanning protocol parameters and scanners using an MRI radiomics phantom. The variability of the radiomics features with different scanning parameters and repeatability measured using a test-retest scheme were evaluated using the coefficient of variation and intraclass correlation coefficient (ICC) for both T1- and T2-weighted images. For variability measures, the features were categorized into three groups: large, intermediate, and small variation. For repeatability measures, the average T1- and T2-weighted image ICCs for the phantom (0.963 and 0.959, respectively) were higher than those for a healthy volunteer (0.856 and 0.849, respectively). Our results demonstrated that various radiomics features are dependent on different scanning parameters and scanners. The radiomics features with a low coefficient of variation and high ICC for both the phantom and volunteer can be considered good candidates for MRI radiomics studies. The results of this study will assist current and future MRI radiomics studies.

8.
South Med J ; 113(10): 488-494, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33005962

ABSTRACT

OBJECTIVE: Women of childbearing age are encouraged not to smoke because of well-documented adverse health outcomes. This study examines the association between e-cigarette use and respiratory conditions (asthma and chronic obstructive pulmonary disease [COPD]) among women of childbearing age. METHODS: The study used data from the Behavioral Risk Factor Surveillance System 2016-2017. The sample consisted of 131,965 women of childbearing age (18-44 years old). The main independent variable was smoking status and the primary outcomes were self-reported respiratory conditions such as asthma and COPD. Data were analyzed using descriptive statistics and multivariate logistic regression to assess the effects of e-cigarettes on asthma and COPD. RESULTS: In this sample of childbearing-age women, 2.79% were current e-cigarettes users with or without a history of combustible cigarette smoking and 3.02% were current dual users. Compared with nonsmokers, current e-cigarette users without a history of combustible cigarette smoking were associated with 74% higher odds of having asthma (adjusted odds ratio [AOR] 1.74, 95% confidence interval [CI] 1.29-2.35), whereas results were not significant for COPD. The odds of having COPD, however, were 3 times higher (AOR 3.28, 95% CI 2.62-4.12) for current e-cigarette users with a history of cigarette smoking, whereas current dual users showed 5 times higher odds (AOR 5.07, 95% CI 3.91-6.56) of COPD compared with nonsmokers. CONCLUSION: Policies related to e-cigarettes need to be reevaluated and clearly communicated to improve prevention efforts for women of childbearing age.


Subject(s)
Respiratory Tract Diseases/etiology , Vaping/adverse effects , Adolescent , Adult , Asthma/etiology , Behavioral Risk Factor Surveillance System , Female , Humans , Logistic Models , Pulmonary Disease, Chronic Obstructive/etiology , Young Adult
9.
Radiother Oncol ; 153: 163-171, 2020 12.
Article in English | MEDLINE | ID: mdl-33075392

ABSTRACT

BACKGROUND AND PURPOSE: Radiation therapy is a risk factor for late cardiac disease in childhood cancer survivors. Several pediatric cohort studies have established whole heart dose and dose-volume response models. Emerging data suggest that dose to cardiac substructures may be more predictive than whole heart metrics. In order to develop substructure dose-response models, the heart model previously used for pediatric cohort dosimetry needed enhancement and substructure delineation. METHODS: To enhance our heart model, we combined the age-scalable capability of our computational phantom with the anatomically-delineated (with substructures) heart models from an international humanoid phantom series. We examined cardiac volume similarity/overlap between registered age-scaled phantoms (1, 5, 10, and 15 years) with the enhanced heart model and the reference phantoms of the same age; dice similarity coefficient (DSC) and overlap coefficient (OC) were calculated for each matched pair. To assess the accuracy of our enhanced heart model, we compared doses from computed tomography-based planning (ground truth) with reconstructed heart doses. We also compared doses calculated with the prior and enhanced heart models for a cohort of nearly 5000 childhood cancer survivors. RESULTS: We developed a realistic cardiac model with 14-substructures, scalable across a broad age range (1-15 years); average DSC and OC were 0.84 ± 0.05 and 0.90 ± 0.05, respectively. The average percent difference between reconstructed and ground truth mean heart doses was 4.2%. In the cohort dosimetry analysis, dose and dose-volume metrics were approximately 10% lower on average when the enhanced heart model was used for dose reconstructions. CONCLUSION: We successfully developed and validated an anatomically realistic age-scalable cardiac model that can be used to establish substructure dose-response models for late cardiac disease in childhood cancer survivor cohorts.


Subject(s)
Cancer Survivors , Neoplasms , Adolescent , Child , Child, Preschool , Heart/diagnostic imaging , Humans , Infant , Neoplasms/radiotherapy , Phantoms, Imaging , Radiometry
10.
Article in English | MEDLINE | ID: mdl-34584772

ABSTRACT

Purpose: We previously developed an age-scalable 3D computational phantom that has been widely used for retrospective whole-body dose reconstructions of conventional two-dimensional historic radiation therapy (RT) treatments in late effects studies of childhood cancer survivors. This phantom is modeled in the FORTRAN programming language and is not readily applicable for dose reconstructions for survivors treated with contemporary RT whose treatment plans were designed using computed tomography images and complex treatment fields. The goal of this work was to adapt the current FORTRAN model of our age-scalable computational phantom into Digital Imaging and Communications in Medicine (DICOM) standard so that it can be used with any treatment planning system (TPS) to reconstruct contemporary RT. Additionally, we report a detailed description of the phantom's age-based scaling functions, information that was not previously published. Method: We developed a Python script that adapts our phantom model from FORTRAN to DICOM. To validate the conversion, we compared geometric parameters for the phantom modeled in FORTRAN and DICOM scaled to ages 1 month, 6 months, 1, 2, 3, 5, 8, 10, 15, and 18 years. Specifically, we calculated the percent differences between the corner points and volume of each body region and the normalized mean square distance (NMSD) between each of the organs. In addition, we also calculated the percent difference between the heights of our DICOM age-scaled phantom and the heights (50th percentile) reported by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC) for male and female children of the same ages. Additionally, we calculated the difference between the organ masses for our DICOM phantom and the organ masses for two reference phantoms (from International Comission on Radiation Protection (ICRP) 89 and the University of Florida/National Cancer Institute reference hybrid voxel phantoms) for ages newborn, 1, 5, 10, 15 and adult. Lastly, we conducted a feasibility study using our DICOM phantom for organ dose calculations in a commercial TPS. Specifically, we simulated a 6 MV photon right-sided flank field RT plan for our DICOM phantom scaled to age 3.9 years; treatment field parameters and age were typical of a Wilms tumor RT treatment in the Childhood Cancer Survivor Study. For comparison, the same treatment was simulated using our in-house dose calculation system with our FORTRAN phantom. The percent differences (between FORTRAN and DICOM) in mean dose and percent of volume receiving dose ⩾5 Gy were calculated for two organs at risk, liver and pancreas. Results: The percent differences in corner points and the volumes of head, neck, and trunk body regions between our phantom modeled in FORTRAN and DICOM agreed within 3%. For all of the ages, the NMSDs were negliglible with a maximum NMSD of 7.80 × 10-2 mm for occiptital lobe of 1 month. The heights of our age-scaled phantom agreed with WHO/CDC data within 7% from infant to adult, and within 2% agreement for ages 5 years and older. We observed that organ masses in our phantom are less than the organ masses for other reference phantoms. Dose calculations done with our in-house calculation system (with FORTRAN phantom) and commercial TPS (with DICOM phantom) agreed within 7%. Conclusion: We successfully adapted our phantom model from the FORTRAN language to DICOM standard and validated its geometric consistency. We also demonstrated that our phantom model is representative of population height data for infant to adult, but that the organ masses are smaller than in other reference phantoms and need further refinement. Our age-scalable computational phantom modeled in DICOM standard can be scaled to any age at RT and used within a commercial TPS to retrospectively reconstruct doses from contemporary RT in childhood cancer survivors.


Subject(s)
Cancer Survivors , Kidney Neoplasms , Phantoms, Imaging , Radiometry/standards , Wilms Tumor , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/radiotherapy , Male , Radiotherapy Planning, Computer-Assisted , Retrospective Studies , United States , Wilms Tumor/diagnostic imaging , Wilms Tumor/radiotherapy
11.
PLoS One ; 13(10): e0205003, 2018.
Article in English | MEDLINE | ID: mdl-30286184

ABSTRACT

PURPOSE: To evaluate the uncertainty of radiomics features from contrast-enhanced breath-hold helical CT scans of non-small cell lung cancer for both manual and semi-automatic segmentation due to intra-observer, inter-observer, and inter-software reliability. METHODS: Three radiation oncologists manually delineated lung tumors twice from 10 CT scans using two software tools (3D-Slicer and MIM Maestro). Additionally, three observers without formal clinical training were instructed to use two semi-automatic segmentation tools, Lesion Sizing Toolkit (LSTK) and GrowCut, to delineate the same tumor volumes. The accuracy of the semi-automatic contours was assessed by comparison with physician manual contours using Dice similarity coefficients and Hausdorff distances. Eighty-three radiomics features were calculated for each delineated tumor contour. Informative features were identified based on their dynamic range and correlation to other features. Feature reliability was then evaluated using intra-class correlation coefficients (ICC). Feature range was used to evaluate the uncertainty of the segmentation methods. RESULTS: From the initial set of 83 features, 40 radiomics features were found to be informative, and these 40 features were used in the subsequent analyses. For both intra-observer and inter-observer reliability, LSTK had higher reliability than GrowCut and the two manual segmentation tools. All observers achieved consistently high ICC values when using LSTK, but the ICC value varied greatly for each observer when using GrowCut and the manual segmentation tools. For inter-software reliability, features were not reproducible across the software tools for either manual or semi-automatic segmentation methods. Additionally, no feature category was found to be more reproducible than another feature category. Feature ranges of LSTK contours were smaller than those of manual contours for all features. CONCLUSION: Radiomics features extracted from LSTK contours were highly reliable across and among observers. With semi-automatic segmentation tools, observers without formal clinical training were comparable to physicians in evaluating tumor segmentation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Image Processing, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Uncertainty , Humans , Observer Variation , Software , Tomography, X-Ray Computed
12.
J Appl Clin Med Phys ; 19(6): 306-315, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30272385

ABSTRACT

A large number of surveys have been sent to the medical physics community addressing many clinical topics for which the medical physicist is, or may be, responsible. Each survey provides an insight into clinical practice relevant to the medical physics community. The goal of this study was to create a summary of these surveys giving a snapshot of clinical practice patterns. Surveys used in this study were created using SurveyMonkey and distributed between February 6, 2013 and January 2, 2018 via the MEDPHYS and MEDDOS listserv groups. The format of the surveys included questions that were multiple choice and free response. Surveys were included in this analysis if they met the following criteria: more than 20 responses, relevant to radiation therapy physics practice, not single-vendor specific, and formatted as multiple-choice questions (i.e., not exclusively free-text responses). Although the results of free response questions were not explicitly reported, they were carefully reviewed, and the responses were considered in the discussion of each topic. Two-hundred and fifty-two surveys were available, of which 139 passed the inclusion criteria. The mean number of questions per survey was 4. The mean number of respondents per survey was 63. Summaries were made for the following topics: simulation, treatment planning, electron treatments, linac commissioning and quality assurance, setup and treatment verification, IMRT and VMAT treatments, SRS/SBRT, breast treatments, prostate treatments, brachytherapy, TBI, facial lesion treatments, clinical workflow, and after-hours/emergent treatments. We have provided a coherent overview of medical physics practice according to surveys conducted over the last 5 yr, which will be instructive for medical physicists.


Subject(s)
Brachytherapy/standards , Health Physics , Neoplasms/radiotherapy , Practice Patterns, Physicians'/standards , Radiotherapy Planning, Computer-Assisted/methods , Workflow , Brachytherapy/methods , Humans , Neoplasms/diagnostic imaging , Particle Accelerators , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Surveys and Questionnaires
13.
J Appl Clin Med Phys ; 18(4): 116-122, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28585732

ABSTRACT

To investigate the inter- and intra-fraction motion associated with the use of a low-cost tape immobilization technique as an alternative to thermoplastic immobilization masks for whole-brain treatments. The results of this study may be of interest to clinical staff with severely limited resources (e.g., in low-income countries) and also when treating patients who cannot tolerate standard immobilization masks. Setup reproducibility of eight healthy volunteers was assessed for two different immobilization techniques. (a) One strip of tape was placed across the volunteer's forehead and attached to the sides of the treatment table. (b) A second strip was added to the first, under the chin, and secured to the table above the volunteer's head. After initial positioning, anterior and lateral photographs were acquired. Volunteers were positioned five times with each technique to allow calculation of inter-fraction reproducibility measurements. To estimate intra-fraction reproducibility, 5-minute anterior and lateral videos were taken for each technique per volunteer. An in-house software was used to analyze the photos and videos to assess setup reproducibility. The maximum intra-fraction displacement for all volunteers was 2.8 mm. Intra-fraction motion increased with time on table. The maximum inter-fraction range of positions for all volunteers was 5.4 mm. The magnitude of inter-fraction and intra-fraction motion found using the "1-strip" and "2-strip" tape immobilization techniques was comparable to motion restrictions provided by a thermoplastic mask for whole-brain radiotherapy. The results suggest that tape-based immobilization techniques represent an economical and useful alternative to the thermoplastic mask.


Subject(s)
Cost-Benefit Analysis , Cranial Irradiation , Head , Immobilization/instrumentation , Healthy Volunteers , Humans , Immobilization/methods , Masks , Reproducibility of Results
14.
BMC Public Health ; 16: 583, 2016 07 16.
Article in English | MEDLINE | ID: mdl-27421287

ABSTRACT

BACKGROUND: Families with children under age six participating in the Temporary Assistance for Needy Families Program (TANF) must participate in work-related activities for 20 h per week. However, due to financial hardship, poor health, and exposure to violence and adversity, families may experience great difficulty in reaching self-sufficiency. The purpose of this report is to describe study design and baseline findings of a trauma-informed financial empowerment and peer support intervention meant to mitigate these hardships. METHODS: We conducted a randomized controlled trial of a 28-week intervention called Building Wealth and Health Network to improve financial security and maternal and child health among caregivers participating in TANF. Participants, recruited from County Assistance offices in Philadelphia, PA, were randomized into two intervention groups (partial and full) and one control group. Participants completed questionnaires at baseline to assess career readiness, economic hardship, health and wellbeing, exposure to adversity and violence, and interaction with criminal justice systems. RESULTS: Baseline characteristics demonstrate that among 103 participants, there were no significant differences by group. Mean age of participants was 25 years, and youngest child was 30 months. The majority of participants were women (94.2 %), never married (83.5 %), unemployed (94.2 %), and without a bank account (66.0 %). Many reported economic hardship (32.0 % very low household food secure, 65.0 % housing insecure, and 31.1 % severe energy insecure), and depression (57.3 %). Exposure to adversity was prevalent, where 38.8 % reported four or more Adverse Childhood Experiences including abuse, neglect and household dysfunction. In terms of community violence, 64.7 % saw a seriously wounded person after an incident of violence, and 27.2 % had seen someone killed. Finally, 14.6 % spent time in an adult correctional institution, and 48.5 % of the fathers of the youngest child spent time in prison. CONCLUSIONS: Baseline findings demonstrate that caregivers participating in TANF have suffered significant childhood adversity, adult violence exposure, and poverty-related stressors that can limit workforce success. High prevalence of housing and food insecurity, exposure to adversity, violence and criminal justice systems demands comprehensive programming to support families. Trauma-informed approaches to career readiness such as the Building Wealth and Health Network offer opportunities for potential success in the workforce. TRIAL REGISTRATION: This study is retrospectively registered with ClinicalTrials.gov. The Identifier is: NCT02577705 The Registration date is October 13, 2015.


Subject(s)
Caregivers/psychology , Family/psychology , Poverty/psychology , Poverty/statistics & numerical data , Public Assistance/statistics & numerical data , Social Welfare/psychology , Social Welfare/statistics & numerical data , Adult , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Philadelphia , Surveys and Questionnaires
15.
J Chem Neuroanat ; 25(4): 233-47, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12842269

ABSTRACT

Utilizing agonist-stimulated GTPgammaS autoradiography, we analyzed the ability of preproorphanin FQ (ppOFQ) peptides to stimulate [35S]-GTPgammaS binding in adult rat brain. Orphanin FQ (OFQ) stimulated [35S]-GTPgammaS binding in a pattern similar to that described for [125I]-OFQ at the endogenous opioid receptor-like (ORL1) receptor. The ppOFQ peptides nocistatin and orphanin FQ2 (OFQ II(1-17)) had no effect, suggesting that they do not mediate their reported analgesic effects via a G(i/o)-coupled receptor (i.e. opioid or ORL1). Unlike OFQ II(1-17), high concentrations of its C-terminal extension, OFQ II(1-28), stimulated [35S]-GTPgammaS binding in a mu (mu) opioid receptor-like distribution and the effect was blocked by naloxone. To explore these observations, we evaluated the receptor binding profile of OFQ II(1-28) at the cloned ORL1 and mu opioid receptors. OFQ II(1-28) had no specific binding at either ORL1 or mu opioid receptors at concentrations up to 50 microM. This lack of affinity was not consistent with a mu-mediated effect, as suggested by preliminary observation using functional autoradiography in rat brain sections. Although behavioral studies suggest that OFQ II(1-28) possesses analgesic activity, this effect does not appear to be mediated via direct binding at the mu opioid receptor. Taken together, these findings support the view that (1) OFQ is the only ppOFQ peptide that binds to and activates the ORL1 receptor and (2) OFQ II(1-28) does not bind or stimulate [35S]-GTPgammaS binding in cells expressing the mu opioid receptor.


Subject(s)
Brain/metabolism , Opioid Peptides/metabolism , Protein Precursors/metabolism , Receptors, Opioid/metabolism , Animals , Autoradiography , COS Cells , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Male , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Rats , Nociceptin Receptor , Nociceptin
16.
J Pharmacol Exp Ther ; 300(3): 992-9, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11861808

ABSTRACT

It is unclear how opioid selectivity and activation are regulated within the receptor core. In previous studies, the OFQ receptor was converted into a functional opioid receptor by mutating five amino acids at three sites to the corresponding residues conserved across the mu-, kappa-, and delta-opioid receptors, suggesting that these sites comprise an opioid binding pocket. To examine this hypothesis, the present study examines whether these conserved residues represent an opioid binding pocket in the context of the opioid receptors, i.e., does their removal from opioid receptors destroy opioid ligand binding? The reciprocal mutations K227A (transmembrane [TM]5), IHI290-292VQV (TM6), and I316T (TM7) were evaluated in the kappa-opioid receptor. In terms of alkaloid binding, there were no changes in affinity for mutants K227A and IHI290-292VQV. At mutant I316T, antagonist binding was unaltered, but there was a trend toward slightly decreased agonist affinity. In contrast, the binding of peptides had a more complex pattern. Again, K227A and IHI290-292VQV did not decrease the binding affinity of dynorphin-related peptides. Mutant I316T had 10- to 20-fold decreased affinity for dynorphin-related peptides, suggesting that I316 is part of a critical dynorphin recognition site. In response to alkaloid stimulation, I316T activated more G-protein(s) than wild type, and similar levels were observed in response to dynorphin stimulation. Overall, these results suggest that ligands are capable of achieving high-affinity binding through interaction with multiple sites/conformations of the receptor. These different modes of interaction have different down-stream results in terms of receptor activation and signal transduction.


Subject(s)
Receptors, Opioid, kappa/chemistry , Receptors, Opioid, kappa/drug effects , Receptors, Opioid/chemistry , Receptors, Opioid/drug effects , Alkaloids/pharmacology , Amino Acid Sequence , Animals , Binding, Competitive/drug effects , COS Cells , Conserved Sequence , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , Haplorhini , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed/genetics , Mutation/genetics , Radioligand Assay , Rats , Receptors, Opioid/genetics , Receptors, Opioid, kappa/genetics , Nociceptin Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...