Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Protein Expr Purif ; 167: 105532, 2020 03.
Article in English | MEDLINE | ID: mdl-31711796

ABSTRACT

Schistosomes express a variety of aspartyl proteases (APs) with distinct roles in the helminth pathophysiology, among which degradation of host haemoglobin is key, since it is the main amino acid source for these parasites. A cathepsin D-like AP from Schistosoma mansoni (SmCD1) has been used as a model enzyme for vaccine and drug development studies in schistosomes and yet a reliable expression system for readily producing the recombinant enzyme in high yield has not been reported. To contribute to further advancing the knowledge about this valuable antischistosomal target, we developed a transient expression system in HEK 293T mammalian cells and performed a biochemical and biophysical characterization of the recombinant enzyme (rSmCD1). It was possible to express a recombinant C-terminal truncated form of SmCD1 (rSmCD1ΔCT) and purify it with high yield (16 mg/L) from the culture supernatant. When analysed by Size-Exclusion Chromatography and multi-angle laser light scattering, rSmCD1ΔCT behaved as a dimer at neutral pH, which is unusual for cathepsins D, turning into a monomer after acidification of the medium. Through analytical ultrancentrifugation, the dimer was confirmed for free rSmCD1ΔCT in solution as well as stabilization of the monomer during interaction with pepstatin. The mammalian cell expression system used here was able to produce rSmCD1ΔCT with high yields allowing for the first time the characterization of important kinetic parameters as well as initial description of its biophysical properties.


Subject(s)
Cathepsin D/isolation & purification , Schistosoma mansoni/enzymology , Animals , Aspartic Acid Proteases/biosynthesis , Aspartic Acid Proteases/chemistry , Aspartic Acid Proteases/isolation & purification , Aspartic Acid Proteases/metabolism , Cathepsin D/biosynthesis , Cathepsin D/chemistry , Cathepsin D/metabolism , Cathepsins/biosynthesis , Cathepsins/chemistry , Cathepsins/isolation & purification , Cathepsins/metabolism , Chromatography, Gel , Dimerization , HEK293 Cells , Humans , Kinetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Ultracentrifugation/methods
2.
Antiviral Res ; 87(2): 149-61, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20188763

ABSTRACT

Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication.


Subject(s)
Enzymes/chemistry , Enzymes/metabolism , Rhabdoviridae/enzymology , Rhabdoviridae/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication , Animals , Baculoviridae/genetics , Biomedical Research/organization & administration , Biomedical Research/trends , Enzymes/genetics , Escherichia coli/genetics , European Union , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription, Genetic , Viral Nonstructural Proteins/genetics
3.
Antiviral Res ; 78(1): 37-46, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18083241

ABSTRACT

Life-threatening RNA viruses emerge regularly, and often in an unpredictable manner. Yet, the very few drugs available against known RNA viruses have sometimes required decades of research for development. Can we generate preparedness for outbreaks of the, as yet, unknown viruses? The VIZIER (VIral enZymes InvolvEd in Replication) (http://www.vizier-europe.org/) project has been set-up to develop the scientific foundations for countering this challenge to society. VIZIER studies the most conserved viral enzymes (that of the replication machinery, or replicases) that constitute attractive targets for drug-design. The aim of VIZIER is to determine as many replicase crystal structures as possible from a carefully selected list of viruses in order to comprehensively cover the diversity of the RNA virus universe, and generate critical knowledge that could be efficiently utilized to jump-start research on any emerging RNA virus. VIZIER is a multidisciplinary project involving (i) bioinformatics to define functional domains, (ii) viral genomics to increase the number of characterized viral genomes and prepare defined targets, (iii) proteomics to express, purify, and characterize targets, (iv) structural biology to solve their crystal structures, and (v) pre-lead discovery to propose active scaffolds of antiviral molecules.


Subject(s)
Antiviral Agents/pharmacology , Computational Biology , Crystallography , Drug Design , Genomics , Proteomics , RNA Viruses/drug effects , RNA-Dependent RNA Polymerase , Virus Replication/drug effects , Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , International Cooperation , Models, Molecular , RNA Viruses/enzymology , RNA Viruses/pathogenicity , RNA Viruses/physiology , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism
4.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1267-75, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17001104

ABSTRACT

A collaborative project between two Structural Proteomics In Europe (SPINE) partner laboratories, York and Oxford, aimed at high-throughput (HTP) structure determination of proteins from Bacillus anthracis, the aetiological agent of anthrax and a biomedically important target, is described. Based upon a target-selection strategy combining ;low-hanging fruit' and more challenging targets, this work has contributed to the body of knowledge of B. anthracis, established and developed HTP cloning and expression technologies and tested HTP pipelines. Both centres developed ligation-independent cloning (LIC) and expression systems, employing custom LIC-PCR, Gateway and In-Fusion technologies, used in combination with parallel protein purification and robotic nanolitre crystallization screening. Overall, 42 structures have been solved by X-ray crystallography, plus two by NMR through collaboration between York and the SPINE partner in Utrecht. Three biologically important protein structures, BA4899, BA1655 and BA3998, involved in tRNA modification, sporulation control and carbohydrate metabolism, respectively, are highlighted. Target analysis by biophysical clustering based on pI and hydropathy has provided useful information for future target-selection strategies. The technological developments and lessons learned from this project are discussed. The success rate of protein expression and structure solution is at least in keeping with that achieved in structural genomics programs.


Subject(s)
Bacillus anthracis/genetics , Proteomics/methods , Bacillus cereus/genetics , Bacterial Proteins , Cloning, Molecular , Computational Biology , Crystallization , Crystallography, X-Ray , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors , Magnetic Resonance Spectroscopy , RNA, Transfer/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Robotics , Spores, Bacterial/genetics , Sulfurtransferases
5.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1125-36, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17001090

ABSTRACT

Protein characterization plays a role in two key aspects of structural proteomics. The first is the quality assessment of the produced protein preparations. Obtaining well diffracting crystals is one of the major bottlenecks in the structure-determination pipeline. Often, this is caused by the poor quality of the protein preparation used for crystallization trials. Hence, it is essential to perform an extensive quality assessment of the protein preparations prior to crystallization and to use the results in the evaluation of the process. Here, a protein-production and crystallization strategy is proposed with threshold values for protein purity (95%) and monodispersity (85%) below which a further optimization of the protein-production process is strongly recommended. The second aspect is the determination of protein characteristics such as domains, oligomeric state, post-translational modifications and protein-protein and protein-ligand interactions. In this paper, applications and new developments of protein-characterization methods using MS, fluorescence spectroscopy, static light scattering, analytical ultracentrifugation and small-angle X-ray scattering within the EC Structural Proteomics in Europe contract are described. Examples of the application of the various methods are given.


Subject(s)
Proteins/metabolism , Proteomics/methods , Crystallization , Hydrolysis , Light , Mass Spectrometry , Microscopy, Fluorescence , Models, Molecular , Protein Conformation , Reverse Transcriptase Polymerase Chain Reaction , Scattering, Radiation , Trypsin , Ultracentrifugation , X-Rays
6.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1196-207, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17001096

ABSTRACT

The Structural Proteomics In Europe (SPINE) programme is aimed at the development and implementation of high-throughput technologies for the efficient structure determination of proteins of biomedical importance, such as those of bacterial and viral pathogens linked to human health. Despite the challenging nature of some of these targets, 175 novel pathogen protein structures (approximately 220 including complexes) have been determined to date. Here the impact of several technologies on the structural determination of proteins from human pathogens is illustrated with selected examples, including the parallel expression of multiple constructs, the use of standardized refolding protocols and optimized crystallization screens.


Subject(s)
Bacterial Infections/metabolism , Bacterial Proteins/chemistry , Proteomics/methods , Viral Proteins/chemistry , Virus Diseases/metabolism , Animals , Bacterial Infections/microbiology , Humans , Protein Folding , Virus Diseases/virology
7.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1218-26, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17001098

ABSTRACT

Producing soluble proteins in Escherichia coli is still a major bottleneck for structural proteomics. Therefore, screening for soluble expression on a small scale is an attractive way of identifying constructs that are likely to be amenable to structural analysis. A variety of expression-screening methods have been developed within the Structural Proteomics In Europe (SPINE) consortium and to assist the further refinement of such approaches, eight laboratories participating in the network have benchmarked their protocols. For this study, the solubility profiles of a common set of 96 His(6)-tagged proteins were assessed by expression screening in E. coli. The level of soluble expression for each target was scored according to estimated protein yield. By reference to a subset of the proteins, it is demonstrated that the small-scale result can provide a useful indicator of the amount of soluble protein likely to be produced on a large scale (i.e. sufficient for structural studies). In general, there was agreement between the different groups as to which targets were not soluble and which were the most soluble. However, for a large number of the targets there were wide discrepancies in the results reported from the different screening methods, which is correlated with variations in the procedures and the range of parameters explored. Given finite resources, it appears that the question of how to most effectively explore ;expression space' is similar to several other multi-parameter problems faced by crystallographers, such as crystallization.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/biosynthesis , Algorithms , Culture Media , Genetic Vectors , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Reproducibility of Results , Solubility , Temperature
8.
Immunol Res ; 21(1): 7-21, 2000.
Article in English | MEDLINE | ID: mdl-10803879

ABSTRACT

A significant obstacle to HIV vaccine development lies in the remarkable diversity of envelope proteins, the major targets of neutralizing antibody. That envelope diversity must be targeted is demonstrated by results from nonhuman primate studies in which single-envelope vaccines have protected against homologous, but rarely against heterologous virus challenges. Similarly, in clinical trials, single-envelope vaccines have failed to prevent break-through infections when challenge viruses were inevitably mismatched with the vaccine. To protect humans from infection by any isolate of HIV, we have prepared vaccine cocktails combining multiple envelopes from distinct viral isolates. We have tested several vehicles for vaccine delivery in small animals and have shown that successive immunizations with envelope, presented first as a DNA recombinant, then as a vaccinia virus (VV) recombinant, and finally as purified protein elicited strong neutralizing antibody responses. We have also tested the VV recombinant vaccine in chimpanzees. Pairs of animals received either single- or multi-envelope VV recombinant vaccines administered by the subcutaneous route. Results showed that the multi-envelope vaccine was safe, immunogenic, and superior to the single-envelope vaccine in eliciting HIV-specific antibody measurable in a standard clinical, immune assay. The promise of this system has led to the initiation of clinical trials, with which the hypothesis that cocktail vaccines will prevent human HIV infections may ultimately be tested.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/prevention & control , HIV-1/immunology , Viral Envelope Proteins/immunology , AIDS Vaccines/adverse effects , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/immunology , HIV-1/genetics , Humans , Immunization Schedule , Mice , Molecular Sequence Data , Neutralization Tests , Pan troglodytes , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccines, DNA/adverse effects , Vaccines, DNA/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vaccinia virus/genetics , Vaccinia virus/immunology , Viral Envelope Proteins/genetics
9.
Biochem Pharmacol ; 57(12): 1375-82, 1999 Jun 15.
Article in English | MEDLINE | ID: mdl-10353258

ABSTRACT

We described the development of a recombinant cell-based system for the characterisation of phosphodiesterase (PDE) 4 isoforms and the evaluation of inhibitors. The Chinese hamster ovary (CHO) cell, which was found to have a low endogenous PDE4 background and no beta-adrenergic receptors (beta-AR), was transiently transfected with beta-AR and various PDE4 isoforms which were expressed as functionally coupled molecules. From correlations of elevation of adenosine 3',5'-cyclic monophosphate in situ and the inhibition of catalytic activity in vitro with the various PDE4 isoforms, it was apparent that PDE4A4, 4B2, 4C2, 4D2, and 4D3 all adopted a high-affinity binding conformation (i.e. expressed the high-affinity rolipram binding site) in the CHO cell, whereas PDE4A330 was expressed in a low-affinity conformation in situ. This gives the opportunity of using this system to screen and optimise inhibitors against a low-affinity conformation of PDE4 in situ and use a high-affinity conformation of PDE4 as a counterscreen, as inhibitor activity against this conformer has been linked with undesirable side effects. This system could also be utilised to screen inhibitors against various PDE4 isoforms in isolation against a low endogenous PDE background in situ for isoform-selective inhibitors.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/analysis , Enzyme Inhibitors/pharmacology , Isoenzymes/analysis , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Adrenergic beta-Agonists/pharmacology , Animals , CHO Cells , COS Cells , Catalysis , Cricetinae , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4 , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Enzyme Activation , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoproterenol/pharmacology , Receptors, Adrenergic, beta-2/drug effects , Receptors, Adrenergic, beta-2/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Time Factors , Transfection
10.
Cell Biochem Biophys ; 29(1-2): 113-32, 1998.
Article in English | MEDLINE | ID: mdl-9631241

ABSTRACT

We present the in vitro characterization of a novel phosphodiesterase type 4 inhibitor, CDP840 (R-[+]-4-[2-¿3-cyclopentyloxy-4-methoxyphenyl¿-2-phenylethyl]pyridine), which has shown efficacy in a phase II allergen challenge study in asthmatics without adverse effects. CDP840 potently inhibits PDE-4 isoenzymes (IC50 2-30 nM) without any effect on PDE-1, 2, 3, 5, and 7 (IC50 > 100 microM). It exhibited no significant selectivity in inhibiting human recombinant isoenzymes PDE-4A, B, C or D and was equally active against the isoenzymes lacking UCR1 (PDE-4B2 and PDE-4D2). In contrast to rolipram, CDP840 acted as a simple competitive inhibitor of all PDE-4 isoenzymes. Studies with rolipram indicated a heterogeneity within all the preparations of PDE-4 isoenzymes, indicative of rolipram inhibiting the catalytic activity of PDE-4 with both a low or high affinity. These observations were confirmed by the use of a PDE-4A variant, PDE-4A330-886, which rolipram inhibited with low affinity (IC50 = 1022 nM). CDP840 in contrast inhibited this PDE-4A variant with similar potency (IC50 = 3.9 nM), which was in good agreement with the Kd of 4.8 nM obtained from [3H]-CDP840 binding studies. Both CDP840 and rolipram inhibited the high-affinity binding of [3H]-rolipram binding to PDE-4A, B, C, and D with similar Kd app (7-19 nM and 3-5 nM, respectively). Thus, the activity of CDP840 at the [3H]-rolipram binding site was in agreement with the inhibitor's activity at the catalytic site. However, rolipram was approximately 100-fold more potent than CDP840 at inhibiting the binding of [3H]-rolipram to mouse brain in vivo. These data clearly demonstrate that CDP840 is a potent selective inhibitor of all PDE-4 isoenzymes. In contrast to rolipram, CDP840 was well-tolerated in humans. This difference, however, cannot at present be attributed to either isoenzyme selectivity or lack of activity in vitro at the high-affinity rolipram binding site (Sr).


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Phosphodiesterase Inhibitors/pharmacology , Pyridines/pharmacology , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Animals , Binding, Competitive , Brain/drug effects , Brain/enzymology , Catalysis/drug effects , Cyclic AMP/biosynthesis , Cyclic Nucleotide Phosphodiesterases, Type 4 , Guinea Pigs , Humans , Male , Mice , Phosphodiesterase Inhibitors/chemistry , Protein Binding/drug effects , Pyridines/chemistry , Pyrrolidinones/antagonists & inhibitors , Pyrrolidinones/metabolism , Rolipram , Tritium
11.
J Virol ; 72(5): 3539-46, 1998 May.
Article in English | MEDLINE | ID: mdl-9557633

ABSTRACT

The putative envelope glycoproteins of hepatitis C virus (HCV) likely play an important role in the initiation of viral infection. Available information suggests that the genomic regions encoding the putative envelope glycoproteins, when expressed as recombinant proteins in mammalian cells, largely accumulate in the endoplasmic reticulum. In this study, genomic regions which include the putative ectodomain of the E1 (amino acids 174 to 359) and E2 (amino acids 371 to 742) glycoproteins were appended to the transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein. This provided a membrane anchor signal and the VSV incorporation signal at the carboxy termini of the E1 and E2 glycoproteins. The chimeric gene constructs exhibited expression of the recombinant proteins on the cell surface in a transient expression assay. When infected with a temperature-sensitive VSV mutant (ts045) and grown at the nonpermissive temperature (40.5 degrees C), cells transiently expressing the E1 or E2 chimeric glycoprotein generated VSV/HCV pseudotyped virus. The resulting pseudotyped virus generated from E1 or E2 surprisingly exhibited the ability to infect mammalian cells and sera derived from chimpanzees immunized with the homologous HCV envelope glycoproteins neutralized pseudotyped virus infectivity. Results from this study suggested a potential functional role for both the E1 and E2 glycoproteins in the infectivity of VSV/HCV pseudotyped virus in mammalian cells. These observations further suggest the importance of using both viral glycoproteins in a candidate subunit vaccine and the potential for using a VSV/HCV pseudotyped virus to determine HCV neutralizing antibodies.


Subject(s)
Hepacivirus/physiology , Viral Envelope Proteins/physiology , Animals , Antibodies, Viral/immunology , Cell Line , Cell Membrane/metabolism , Cricetinae , Gene Expression , Genes, Viral , HeLa Cells , Hepacivirus/genetics , Hepacivirus/immunology , Humans , Neutralization Tests , Recombinant Fusion Proteins , Tumor Cells, Cultured , Vesicular stomatitis Indiana virus/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
12.
Biochem J ; 326 ( Pt 1): 53-60, 1997 Aug 15.
Article in English | MEDLINE | ID: mdl-9337850

ABSTRACT

The type 4 phosphodiesterase (PDE) family comprises four enzymes (4A, 4B, 4C and 4D) that are characterized by their specificity for cAMP and selective inhibition by the anti-depressant drug rolipram (4-[3-(cyclopentoxyl)-4-methoxyphenyl]2-pyrrolidone). In common with other PDEs, they consist of a central conserved domain associated with catalytic activity in addition to two N-terminal upstream conserved regions (UCR1 and UCR2) that are unique to the type 4 enzymes. We have isolated a 2 kb cDNA encoding a full-length type 4A PDE{HSPDE4A4B[Bolger, Michaeli, Martins, St.John, Steiner, Rodgers, Riggs, Wigler and Ferguson (1993) Mol. Cell. Biol. 13, 6558-6571]} from a human frontal cortex cDNA library. Northern blot analysis showed that the major PDE4A mRNA of 4.5 kb was widely distributed in different human tissues. The recombinant PDE4A expressed in COS cells had a molecular mass of approx. 117 kDa as revealed by SDS/PAGE/Western blotting with a PDE4A-specific antibody and was specific for cAMP with a Km of 4.8 microM. The enzyme activity was potently inhibited by R-rolipram (IC50 204 nM) and showed a 2.7-fold stereoselectivity over the S enantiomer. Analysis of the kinetics of inhibition indicated that R-rolipram did not behave as a simple competitive inhibitor. Dixon replots suggested that there was more than one mode of interaction consistent with the detection in the enzyme of a high-affinity binding site for R-rolipram with a Kd of 2.3 nM. Truncation of the PDE4A enzyme by deletion mutagenesis showed that neither of the UCRs was required for catalytic activity and identified an approx. 71 kDa core enzyme with a K(m) for cAMP of 3.3 microM. In contrast with the full-length PDE4A, R-rolipram behaved as a simple competitive inhibitor of this form of the enzyme with decreased potency (IC50 1022 nM) and no stereoselectivity. In addition, no high-affinity rolipram-binding site was detected in the truncated enzyme, indicating that this interaction involves sequences upstream of the catalytic domain of the enzyme.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/chemistry , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , 3',5'-Cyclic-AMP Phosphodiesterases/biosynthesis , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Animals , Binding Sites , COS Cells , Cell Line , Cloning, Molecular , Genetic Vectors , Humans , Monocytes , Organ Specificity/genetics , Peptide Mapping , Protein Structure, Tertiary , Pyrrolidinones/chemistry , Pyrrolidinones/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/biosynthesis , Rolipram , Structure-Activity Relationship
14.
Vaccine ; 15(3): 265-72, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9139484

ABSTRACT

Recombinant vaccinia virus (VV) vectors that express the envelope (Env) protein of the human immunodeficiency virus-type 1 (HIV-1) have been previously shown to elicit HIV-specific cytotoxic T-lymphocyte (CTL) and weak antibody responses in non-human primate studies and clinical trials. In first clinical trials, single Env proteins were presented to the immune system by VV recombinants and other vectors, but individuals were not protected against later exposures to heterologous HIV. It is likely that the generation of protective immune responses against diverse HIV will require that vaccines encompass proteins from not just one, but multiple distinct HIV isolates. Here is described the simple construction of numerous new VV, each expressing a unique, truncated, Env protein (VVenv). Mouse experiments were performed to evaluate the ability of these VVenv to elicit immune responses. HIV-1-specific antibodies appeared within one month following one intraperitoneal inoculation of mice with single or mixed VVenv, reaching plateau levels by 4 months. The magnitude of antibody production was poor at the dose of 10(5) p.f.u. VVenv per animal, but improved with increasing doses of VVenv up to 10(7) p.f.u. per animal. The subcutaneous route of VV immunization, previously proven safe in human trials, was also effective for administering VVenv. These results highlight the strengths of recombinant VV constructs as vehicles for the presentation of multiple HIV-1-Env proteins to the naive immune system.


Subject(s)
AIDS Vaccines/immunology , Antibody Specificity , Gene Products, env/immunology , HIV Antibodies/biosynthesis , HIV-1/immunology , Vaccines, Synthetic/immunology , Vaccinia virus/immunology , AIDS Vaccines/administration & dosage , Animals , Drug Administration Schedule , Female , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Injections, Intraperitoneal , Injections, Subcutaneous , Mice , Mice, Inbred C57BL , Vaccines, Synthetic/administration & dosage , Vaccinia virus/genetics
15.
Biochemistry ; 36(8): 2112-22, 1997 Feb 25.
Article in English | MEDLINE | ID: mdl-9047310

ABSTRACT

CD23/Fc epsilonRII, the low-affinity receptor for IgE, is a multifunctional protein of importance in blood cell development and the immune system. We have studied the interaction of CD23 with IgE in solution using hydrodynamic methods applied to recombinant fragments of both ligands: sCD23, corresponding to the soluble lectin domain of CD23, and Fc epsilon3-4, a dimer of the C epsilon3-C epsilon4 sequence of IgE. The hydrodynamic, spectroscopic, and biological properties of these fragments suggest that they have a fully native structure. Sedimentation equilibrium studies on mixtures of sCD23 and Fc epsilon3-4 indicate that IgE has two binding sites for CD23, each characterized by affinities of approximately 10(5) M(-1). Analysis of the sedimentation as a function of temperature allows conclusions to be drawn about the thermodynamics of binding at the two sites. Binding at the first site is characterized by large changes in enthalpy (delta H(degree)To = -2.1 +/- 3.3 kcal mol(-1)) and heat capacity (delta Cp(degree) = -320 +/- 320 cal mol(-1) K(-1)), whereas binding at the second site is characterized by small changes in enthalpy (delta H(degree)To = 0.1 +/- 5.6 kcal mol(-1)) and heat capacity (delta Cp(degree) = -140 +/- 550 cal mol(-1) K(-1)). In native CD23, there are two or three lectin domains, associated through an alpha-helical coiled-coil stalk. The predicted structure of the CD23 oligomers and symmetry considerations rule out the possibility of two lectin domains from one oligomer binding to identical sites in IgE. The notion of two types of interaction in the 2:1 complex between CD23 and IgE is consistent with the thermodynamic data presented.


Subject(s)
Immunoglobulin E/metabolism , Immunoglobulin Fc Fragments/metabolism , Lectins/metabolism , Receptors, IgE/metabolism , Binding Sites , Humans , Immunoglobulin E/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin epsilon-Chains/immunology , Immunoglobulin epsilon-Chains/metabolism , Receptors, IgE/immunology , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
16.
Biochemistry ; 36(50): 15579-88, 1997 Dec 16.
Article in English | MEDLINE | ID: mdl-9398286

ABSTRACT

The high-affinity receptor for immunoglobulin E (IgE), FcepsilonRI, is an alphabetagamma2 tetramer found on mast cells, basophils, and several other types of immune effector cells. The interaction of IgE with the alpha-subunit of FcepsilonRI is central to the pathogenesis of allergy. Detailed knowledge of the mode of interaction of FcepsilonRI with IgE may facilitate the development of inhibitors for general use in the treatment of allergic disease. To this end we have performed site-directed mutagenesis on a soluble form of the FcepsilonRI alpha-chain (sFcepsilonRIalpha). The effects of four mutations in the second immunoglobulin-like domain of sFcepsilonRIalpha upon the kinetics of binding to IgE and fragments of IgE have been analyzed using surface plasmon resonance. As described in the preceding paper of this issue [Henry, A. J., et al. (1997) Biochemistry 36, 15568-15578], biphasic binding kinetics was observed. Two of the mutations had significant effects on binding: K117D reduced the affinity of sFcepsilonRIalpha for IgE by a factor of 30, while D159K increased the affinity for IgE by a factor of 7, both principally through changes in the rates of dissociation of the slower phase of the interaction. Circular dichroism spectra of sFcepsilonRIalpha incorporating either of these mutations were indistinguishable from those of wild-type sFcepsilonRIalpha, demonstrating that the native conformation had not been disrupted. Our results, together with those from site-directed mutagenesis on fragments of IgE presented in the accompanying paper, define the contact surfaces in the IgE:sFcepsilonRIalpha complex.


Subject(s)
Immunoglobulin E/metabolism , Immunoglobulin Fc Fragments/metabolism , Receptors, IgE/chemistry , Receptors, IgE/metabolism , Binding Sites , Biosensing Techniques , Circular Dichroism , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Humans , Hypersensitivity/etiology , Immunoglobulin E/chemistry , Immunoglobulin Fc Fragments/chemistry , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Receptors, IgE/genetics , Transfection/genetics , Tumor Cells, Cultured
17.
Biochem J ; 328 ( Pt 2): 549-58, 1997 Dec 01.
Article in English | MEDLINE | ID: mdl-9371714

ABSTRACT

5'-Rapid amplification of cDNA ends, done on poly(A)+ RNA from human U87 cells, was used to identify 420 bp of novel 5' sequence of a PDE4B cAMP-specific phosphodiesterase (PDE). This identified an open reading frame encoding a putative 721-residue 'long-form' PDE4B splice variant, which we term HSPDE4B3. HSPDE4B3 differs from the two known PDE4B forms by virtue of its unique 79-residue N-terminal region, compared with the unique N-terminal regions of 94 and 39 residues found in HSPDE4B1 and HSPDE4B2 respectively. In transfected COS7 cells the two long forms, HSPDE4B1 and HSPDE4B3, had molecular masses of approx. 104 and approx. 103 kDa respectively. Expressed in COS-7 cells, the three HSPDE4B isoforms were found in the high-speed supernatant (cytosol) fraction as well as both the high-speed pellet (P2) and low-speed pellet (P1) fractions. All isoforms showed similar Km values for cAMP hydrolysis (1.5-2.6 microM). The maximal activities of the soluble cytosolic activity of the two long forms were very similar, whereas that of the short form, HSPDE4B2, was approx. 4-fold higher. Particulate-associated HSPDE4B1 and HSPDE4B2 were less active (approx. 40%) than their cytosol forms, whereas particulate HSPDE4B3 was similar in activity to its cytosolic form. Particulate and cytosolic forms of HSPDE4B1 and HSPDE4B3 were similarly inhibited by rolipram {4-[3-(cyclopentoxyl)-4-methoxyphenyl]-2-pyrrolidone}, the selective inhibitor of PDE4 (IC50 0.05-0.1 microM), whereas particulate-associated HSPDE4B2 was profoundly (approx. 10-fold) more sensitive (IC50 0.02 microM) to rolipram inhibition than its cytosolic form (IC50 0.2 microM). The various particulate-associated HSPDE4B isoforms showed very different susceptibilities to solubilization with the detergent Triton X-100 and high NaCl concentration. A novel cDNA, called pRPDE74, was obtained by screening a rat olfactory lobe cDNA library. This contained an open reading frame encoding a 721-residue protein that showed approx. 96% amino acid identity with HSPDE4B3 and is proposed to reflect the rat homologue of this human enzyme and is thus called RNPDE4B3. Alternative splicing of mRNA generated from both the human and rat PDE4B genes produces long and short splice variants that have unique N-terminal splice regions. It is suggested that these alternatively spliced regions determine changes in the maximal catalytic activity of the isoforms, their susceptibility to inhibition by rolipram and mode of interaction with particulate fractions.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/genetics , Cyclic AMP/metabolism , Isoenzymes/genetics , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Amino Acid Sequence , Animals , Brain/enzymology , Cloning, Molecular , Cyclic Nucleotide Phosphodiesterases, Type 4 , DNA, Complementary/genetics , Gene Amplification , Humans , Isoenzymes/metabolism , Molecular Sequence Data , Myocardium/enzymology , Olfactory Pathways/enzymology , Phosphodiesterase Inhibitors/pharmacology , Pyrrolidinones/pharmacology , RNA Splicing , Rats , Recombinant Proteins/biosynthesis , Rolipram , Sequence Homology, Amino Acid , Substrate Specificity
18.
Cell Signal ; 9(8): 575-85, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9429761

ABSTRACT

A cDNA coding for a human phosphodiesterase 4C (PDE4C2) was isolated from the mRNA prepared from the glioblastoma cell line, U87. The cDNA contained an ORF of 1818 bp corresponding to a 605 amino acid polypeptide. The sequence differed at the 5' end from the human PDE4C previously reported (Engels, P. et al, 1995 FEBs Letters 358, 305-310) indicating that it represents a novel splice variant of the human PDE4C gene. Evidence was also obtained for a third 5' splice variant. The PDE4C2 cDNA was transfected into both COS 1 cells and yeast cells, and shown to direct the expression of an 80 kD polypeptide by Western blotting using a PDE4C specific antiserum. The activity of cell lysates was typical of PDE4 being specific for cAMP and inhibitable by the selective inhibitor, rolipram. However, the Km for cAMP of the enzyme produced in COS cells was 0.6 microM compared to 2.6 microM for the yeast 4C activity. In addition the COS cell PDE4 activity was much more sensitive to R rolipram than the yeast PDE4 enzyme (IC50 of 23 nM compared to 1648 nM). This difference in rolipram sensitivity was associated with the detection of a high affinity [3H] R rolipram binding site on the COS cell 4C enzyme but not on the yeast expressed enzyme. The results indicate that the enzyme can adopt more than one active conformation, which are distinguished by their interaction with rolipram.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/genetics , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Amino Acid Sequence , Animals , Base Sequence , COS Cells , Catalysis , Cloning, Molecular , Cyclic Nucleotide Phosphodiesterases, Type 4 , DNA, Complementary , Gene Expression , Humans , Molecular Sequence Data , Saccharomyces cerevisiae/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid
19.
J Immunol ; 157(1): 156-9, 1996 Jul 01.
Article in English | MEDLINE | ID: mdl-8683109

ABSTRACT

The structural features of the human IgA1 tailpiece required for interaction with J chain in IgA dimer assembly were investigated using a protein engineering approach. Wild-type and mutant forms of IgA1 were expressed in the mouse myeloma cell line, J558L, which endogenously expresses J chain. Wild-type IgA1 was secreted as a mixture of dimers and monomers. Deletion of the entire tailpiece by stop codon introduction completely prevented dimer formation. Similarly, substitution of the penultimate residue of the tailpiece, Cys471, with serine resulted in the secretion of IgA monomers alone. Substitution of Asn459 with alanine to prevent attachment of N-linked carbohydrate to the tailpiece also resulted in markedly reduced dimer assembly. These results indicate the critical role played by the tailpiece, and Cys471 in particular, in IgA dimerization. In addition, we found tailpiece-deleted IgA1 and the Cys to Ser471 mutant IgA1 were secreted as mixtures of covalently associated monomers (alpha 2L2) and alpha L half-molecules. The tailpiece may thus play some role in promoting the association of alpha-chains required for IgA monomer assembly.


Subject(s)
Immunoglobulin A/biosynthesis , Immunoglobulin A/genetics , Mutagenesis, Site-Directed , Animals , Base Sequence , Biopolymers/biosynthesis , Biopolymers/genetics , Biopolymers/immunology , Genetic Vectors/immunology , Humans , Immunoglobulin A/chemistry , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed/immunology , Protein Conformation , Protein Engineering , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Tumor Cells, Cultured
20.
Br J Cancer ; 72(6): 1364-72, 1995 Dec.
Article in English | MEDLINE | ID: mdl-8519646

ABSTRACT

A humanised IgG1/k version of A33 (hA33) has been constructed and expressed with yields up to 700 mg l-1 in mouse myeloma NS0 cells in suspension culture. The equilibrium dissociation constant of hA33 (KD = 1.3 nM) was shown to be equivalent to that of the murine antibody in a cell-binding assay. hA33 labelled with yttrium-90 using the macrocyclic chelator 12N4 (DOTA) was shown to localise very effectively to human colon tumour xenografts in nude mice, with tumour levels increasing as blood concentration fell up to 144 h. A Fab' variant of hA33 with a single hinge thiol group to facilitate chemical cross-linking has also been constructed and expressed with yields of 500 mg l-1. Trimaleimide cross-linkers have been used to produce a trivalent Fab fragment (hA33 TFM) that binds antigen on tumour cells with greater avidity than hA33 IgG. Cross-linkers incorporating 12N4 or 9N3 macrocycles have been used to produce hA33 TFM labelled stably and site specifically with yttrium-90 or indium-111 respectively. These molecules have been used to demonstrate that hA33 TFM is cleared more rapidly than hA33 IgG from the circulation of animals but does not lead to accumulation of these metallic radionuclides in the kidney. 90Y-labelled hA33 TFM therefore appears to be the optimal form of the antibody for radioimmunotherapy of colorectal carcinoma.


Subject(s)
Immunoconjugates/metabolism , Immunoconjugates/pharmacology , Amino Acid Sequence , Animals , CHO Cells , Cloning, Molecular , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/radiotherapy , Cricetinae , DNA, Complementary/genetics , Drug Screening Assays, Antitumor , Gene Expression , Genes, Immunoglobulin , Humans , Hybridomas/metabolism , Hybridomas/physiology , Immunoglobulin Fragments/biosynthesis , Immunoglobulin Fragments/genetics , Immunoglobulin Fragments/metabolism , Immunoglobulin G/biosynthesis , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Indium Radioisotopes/pharmacokinetics , Indium Radioisotopes/pharmacology , Mice , Mice, Nude , Molecular Sequence Data , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Neoplasm Transplantation , Tissue Distribution , Transplantation, Heterologous , Tumor Cells, Cultured , Yttrium Radioisotopes/pharmacokinetics , Yttrium Radioisotopes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...