Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606884

ABSTRACT

A comprehensive investigation of the solution-phase photophysics of tetracene bis-carboxylic acid [5,12-tetracenepropiolic acid (Tc-DA)] and its related methyl ester [5,12-tetracenepropynoate (Tc-DE)], a non-hydrogen-bonding counterpart, reveals the role of the carboxylic acid moiety in driving molecular aggregation and concomitant excited-state behavior. Low-concentration solutions of Tc-DA exhibit similar properties to the popular 5,12-bis((triisopropylsilyl)ethynl)tetracene, but as the concentration increases, evidence for aggregates that form excimers and a new mixed-state species with charge-transfer (CT) and correlated triplet pair (TT) character is revealed by transient absorption and fluorescence experiments. Aggregates of Tc-DA evolve further with concentration toward an additional phase that is dominated by the mixed CT/TT state which is the only state present in Tc-DE aggregates and can be modulated with the solvent polarity. Computational modeling finds that cofacial arrangement of Tc-DA and Tc-DE subunits is the most stable aggregate structure and this agrees with results from 1H NMR spectroscopy. The calculated spectra of these cofacial dimers replicate the observed broadening in ground-state absorption as well as accurately predict the formation of a near-UV transition associated with a CT between molecular subunits that is unique to the specific aggregate structure. Taken together, the results suggest that the hydrogen bonding between Tc-DA molecules and the associated disruption of hydrogen bonding with solvent produce a regime of dimer-like behavior, absent in Tc-DE, that favors excimers rather than CT/TT mixed states. The control of aggregate size and structure using distinct functional groups, solute concentration, and solvent in tetracene promises new avenues for its use in light-harvesting schemes.

2.
Chem Sci ; 15(4): 1283-1296, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38274080

ABSTRACT

Important applications of photon upconversion through triplet-triplet annihilation require conversion of near-IR photons to visible light. Generally, however, efficiencies in this spectral region lag behind bluer analogues. Herein we consider potential benefits from a conformationally well-defined covalent dimer annihilator TIPS-BTX in studies that systematically compare function to a related monomer model TIPS-tetracene (TIPS-Tc). TIPS-BTX exhibits weak electronic coupling between chromophores juxtaposed about a polycyclic bridge. We report an upconversion yield ϕUC for TIPS-BTX that is more than 20× larger than TIPS-Tc under comparable conditions (0.16%). While the dimer ϕUC is low compared to bluer champion systems, this yield is amongst the largest so-far reported for a tetracenic dimer system and is achieved under unoptimized conditions suggesting a significantly higher ceiling. Further investigation shows the ϕUC enhancement for the dimer is due exclusively to the TTA process with an effective yield more that 30× larger for TIPS-BTX compared to TIPS-Tc. The ϕTTA enhancement for TIPS-BTX relative to TIPS-Tc is indicative of participation by intramolecular multiexciton states with evidence presented in spin statistical arguments that the 5TT is involved in productive channels. For TIPS-BTX we report a spin-statistical factor f = 0.42 that matches or exceeds values found in champion annihilator systems such as DPA. At the same time, the poor relative efficiency of TIPS-Tc suggests involvement of non-productive bimolecular channels and excimeric states are suspected. Broadly these studies indicate that funneling of photogenerated electronic states into productive pathways, and avoiding parasitic ones, remains central to the development of champion upconversion systems.

3.
J Evol Biol ; 33(6): 773-782, 2020 06.
Article in English | MEDLINE | ID: mdl-32086852

ABSTRACT

Theory on the evolution of niche width argues that resource heterogeneity selects for niche breadth. For parasites, this theory predicts that parasite populations will evolve, or maintain, broader host ranges when selected in genetically diverse host populations relative to homogeneous host populations. To test this prediction, we selected the bacterial parasite Serratia marcescens to kill Caenorhabditis elegans in populations that were genetically heterogeneous (50% mix of two experimental genotypes) or homogeneous (100% of either genotype). After 20 rounds of selection, we compared the host range of selected parasites by measuring parasite fitness (i.e. virulence, the selected fitness trait) on the two focal host genotypes and on a novel host genotype. As predicted, heterogeneous host populations selected for parasites with a broader host range: these parasite populations gained or maintained virulence on all host genotypes. This result contrasted with selection in homogeneous populations of one host genotype. Here, host range contracted, with parasite populations gaining virulence on the focal host genotype and losing virulence on the novel host genotype. This pattern was not, however, repeated with selection in homogeneous populations of the second host genotype: these parasite populations did not gain virulence on the focal host genotype, nor did they lose virulence on the novel host genotype. Our results indicate that host heterogeneity can maintain broader host ranges in parasite populations. Individual host genotypes, however, vary in the degree to which they select for specialization in parasite populations.


Subject(s)
Adaptation, Biological , Biological Evolution , Host-Pathogen Interactions/genetics , Selection, Genetic , Serratia marcescens/pathogenicity , Animals , Caenorhabditis elegans , Serratia marcescens/genetics , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...