Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(7): e09921, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35855996

ABSTRACT

The influence of the pH of anthocyanins on photovoltaic performance in dye-sensitized solar cells has been investigated. Anthocyanins were extracted from crushed leaf stocks of Manihot esculenta Crantz (Cassava plant) using methanol acidified with 0.5% trifluoracetic acid. The filtrate was concentrated using a rotary evaporator and partitioned against ethyl acetate. The anode was prepared by screen printing TiO2 paste on a previously cleaned fluorine-doped tin oxide (FTO) glass substrate. The cathode was made by applying plastisol on a previously cleaned FTO glass substrate using an artistic brush and later annealed at 450 °C for 20 min to activate platinum. The performance of the solar cells was measured using a solar simulator fitted with an AM1.5 air filter. Electron transport was studied using electrochemical impedance spectroscopy (EIS). It was observed that the short circuit current and efficiency dropped from pH 2 to pH 6 and peaked at pH 8, with values of 0.399 mA and 0.390%, respectively. It then drops further as the basicity increases. The open circuit voltage was observed to increase consistently from pH 2 to pH 12. EIS results showed that the electron density in the conduction band of TiO2 increases from pH 2 to pH 10 and drops from pH 10 to pH 12. It was concluded that, while a large number of electrons ( ∼ 10 16 m - 3 ) are injected into the conduction band of TiO2, the majority do not contribute to the current but instead recombine with other electron acceptor species in the solar cell. However, the injected electrons cause an upwards shift in the quasi-Fermi level of electrons in the conduction band of TiO2. This explains the large variation in the open circuit voltage compared to the short circuit current.

2.
Heliyon ; 7(3): e06571, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33855239

ABSTRACT

The influence of concentration of anthocyanins in dye sensitized solar cells (DSSC) has been investigated, with focus on how concentration influence electron transport. The influence on electron transport was then linked to solar cell performance. Anthocyanins were extracted from fresh flowers of Acanthus pubscenes using methanol acidified with 0.5% trifluoracetic acid, concentrated using a rotary evaporator and partitioned against ethyl acetate. Concentration of the anthocyanins was determined using Keracyanin Chloride as a standard. DSSC were fabricated using Titanium dioxide as anode, anthocyanins as sensitizers and Platinum as counter electrode material. Titanium dioxide was deposited on Fluorine doped Tin oxide glass substrate using slot coating method. Platinum was deposited on FTO glass substrate using a brush previously dipped in plastisol precursor, and annealed at 450 0C for 20 min to activate Platinum. Dye sensitized solar cells were assembled using anthocyanins at varying concentrations. Performance parameters of the solar cells were measured using a solar simulator which was fitted with digital source meter. Electron transport parameters were studied using electrochemical impedance spectroscopy (EIS). Open circuit voltage, short circuit current and fill factor were observed to increase with concentration of anthocyanins. The increase in solar cell performance was attributed to increase in charge density which led more charges being available for transported to solar cell contacts. The increased charge resulted in a negative shift in Fermi level of electrons in the conduction band of TiO2. The shift in Fermi level resulted into an increase in open circuit voltage and the overall solar cell performance. EIS studies revealed increase in recombination resistance with concentration of anthocyanins. The increase in recombination resistance was found to be related to increase in electron density, and hence the shift in the Fermi level of electrons in the conduction band of TiO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...