Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(10): e31392, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826759

ABSTRACT

Background: The highly infectious nature of SARS-CoV-2 necessitates using bio-containment facilities to study viral pathogenesis and identify potent antivirals. However, the lack of high-level bio-containment laboratories across the world has limited research efforts into SARS-CoV-2 pathogenesis and the discovery of drug candidates. Previous research has reported that non-replicating SARS-CoV-2 Spike-pseudotyped viral particles are effective tools to screen for and identify entry inhibitors and neutralizing antibodies. Methods: To generate SARS-CoV-2 pseudovirus, a lentiviral packaging plasmid p8.91, a luciferase expression plasmid pCSFLW, and SARS-CoV-2 Spike expression plasmids (Wild-type (D614G) or Delta strain) were co-transfected into HEK293 cells to produce a luciferase-expressing non-replicating pseudovirus which expresses SARS-CoV-2 spike protein on the surface. For relative quantitation, HEK293 cells expressing ACE2 (ACE2-HEK293) were infected with the pseudovirus, after which luciferase activity in the cells was measured as a relative luminescence unit. The ACE2-HEK293/Pseudovirus infection system was used to assess the antiviral effects of some compounds and plasma from COVID-19 patients to demonstrate the utility of this assay for drug discovery and neutralizing antibody screening. Results: We successfully produced lentiviral-based SARS-CoV2 pseudoviruses and ACE2-expressing HEK293 cells. The system was used to screen compounds for SARS-CoV-2 entry inhibitors and identified two compounds with potent activity against SARS-CoV-2 pseudovirus entry into cells. The assay was also employed to screen patient plasma for neutralizing antibodies against SARS-CoV-2, as a precursor to live virus screening, using successful hits. Significance: This assay is scalable and can perform medium-to high-throughput screening of antiviral compounds with neither severe biohazard risks nor the need for higher-level containment facilities. Now fully deployed in our resource-limited laboratory, this system can be applied to other highly infectious viruses by swapping out the envelope proteins in the plasmids used in pseudovirus production.

2.
Med Sci (Basel) ; 10(1)2022 02 03.
Article in English | MEDLINE | ID: mdl-35225943

ABSTRACT

Babesia and Theileria are protozoan parasites belonging to the order piroplasmida, transmitted by hard ticks, and can cause diseases known as piroplasmosis. Human infections are usually asymptomatic, except in immuno-compromised persons who present malaria-like symptoms. Moreover, microscopically, the morphologies of Babesia and Theileria can resemble that of the malaria parasite, Plasmodium. In malaria-endemic areas with limited resources, these similarities can increase the possibility of misdiagnosing a patient as having malaria instead of piroplasmosis, which may further lead to inappropriate choice of disease management. This preliminary investigation aimed at detecting Babesia/Theileria in cattle, dogs and humans in some parts of Accra. Whole blood samples were taken from febrile cattle (n = 30) and dogs (n = 33), as well as humans diagnosed with malaria (n = 150). Blood samples of all study subjects were microscopically screened for possible presence of haemoparasites. Samples whose smears had features suggestive of possible piroplasmic infection were all given the label "suspected Babesia/Theileria-infected" samples. Nested polymerase chain reaction (PCR) was performed on extracted deoxyribonucelic acid (DNA) from all the "suspected" samples of cattle, dogs and humans, with primer sets that can detect 18S rRNA genes of Babesia/Theileria spp. In addition to this, amplification was performed on the "suspected" dog samples using the BcW-A/BcW-B primer set which detects the 18S rRNA genes of B. canis, while the BoF/BoR primer set which targets the rap-1 region of B. bovis and another primer set which detects the 18S rRNA genes of most bovine Babesia spp. (including B. divergens) were used on the suspected cattle samples. For the human samples, however, additional amplification was done on the extracted DNA using primers for the three other Babesia targeted (B. divergens, B. bovis and B. canis). Microscopy showed possible Babesia/Theileria infection suspected in all three groups of subjects in the following proportions: cattle (10/30; 33%), dogs (3/33; 9%) and humans (6/150; 4%). DNA from one-third of the "suspected" dog samples yielded amplification with Babesia canis primers. Moreover, a broad-detecting set of primers (that can amplify some Babesia and Theileria species) amplified DNA from nine (9/30; 30%) of the "suspected" cattle samples, but none from those of the humans. Although for this study conducted in the city, the Babesia/Theileria primers used did not amplify DNA from the six "suspected" human samples; the possibility of Babesia/Theileria infection in humans in other parts of the country cannot be overruled. There is therefore a need for further studies on possible emergence of human babesiosis/theileriosis in other parts of Ghana and sequencing for specific identification of any circulating strain.


Subject(s)
Babesia , Babesiosis , Malaria , Plasmodium , Theileria , Animals , Babesia/genetics , Babesiosis/diagnosis , Babesiosis/epidemiology , Babesiosis/parasitology , Cattle , DNA , Dogs , Ghana , Humans , Plasmodium/genetics , RNA, Ribosomal, 18S/genetics , Theileria/genetics
3.
J Virol ; 96(3): e0192321, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34787460

ABSTRACT

Akt (protein kinase B) is a key signaling protein in eukaryotic cells that controls many cellular processes, such as glucose metabolism and cell proliferation, for survival. As obligate intracellular pathogens, viruses modulate host cellular processes, including Akt signaling, for optimal replication. The mechanisms by which viruses modulate Akt and the resulting effects on the infectious cycle differ widely depending on the virus. In this study, we explored the effect of Akt serine 473 phosphorylation (p-Akt) during murine norovirus (MNV) infection. p-Akt increased during infection of murine macrophages with acute MNV-1 and persistent CR3 and CR6 strains. Inhibition of Akt with MK2206, an inhibitor of all three isoforms of Akt (Akt1/2/3), reduced infectious virus progeny of all three virus strains. This reduction was due to decreased viral genome replication (CR3), defective virus assembly (MNV-1), or altered cellular egress (CR3 and CR6) in a virus strain-dependent manner. Collectively, our data demonstrate that Akt activation increases in macrophages during the later stages of the MNV infectious cycle, which may enhance viral infection in unique ways for different virus strains. The data, for the first time, indicate a role for Akt signaling in viral assembly and highlight additional phenotypic differences between closely related MNV strains. IMPORTANCE Human noroviruses (HNoV) are a leading cause of viral gastroenteritis, resulting in high annual economic burden and morbidity, yet there are no small-animal models supporting productive HNoV infection or robust culture systems producing cell culture-derived virus stocks. As a result, research on drug discovery and vaccine development against norovirus infection has been challenging, and no targeted antivirals or vaccines against HNoV are approved. On the other hand, murine norovirus (MNV) replicates to high titers in cell culture and is a convenient and widespread model in norovirus research. Our data demonstrate the importance of Akt signaling during the late stage of the MNV life cycle. Notably, the effect of Akt signaling on genome replication, virus assembly, and cellular egress is virus strain specific, highlighting the diversity of biological phenotypes despite small genetic variability among norovirus strains. This study is the first to demonstrate a role for Akt in viral assembly.


Subject(s)
Caliciviridae Infections/metabolism , Caliciviridae Infections/virology , Macrophages/metabolism , Macrophages/virology , Norovirus/physiology , Proto-Oncogene Proteins c-akt/metabolism , Virus Replication , Animals , Caliciviridae Infections/immunology , Disease Susceptibility , Host-Pathogen Interactions , Macrophage Activation , Macrophages/immunology , Mice , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Species Specificity
4.
J Leukoc Biol ; 111(3): 629-639, 2022 03.
Article in English | MEDLINE | ID: mdl-34259355

ABSTRACT

Macrophages possess mechanisms for reinforcing the integrity of their endolysosomes against damage. This property, termed inducible renitence, was previously observed in murine macrophages stimulated with LPS, peptidoglycan, IFNγ, or TNFα, which suggested roles for renitence in macrophage resistance to infection by membrane-damaging pathogens. This study analyzed additional inducers of macrophage differentiation for their ability to increase resistance to lysosomal damage by membrane-damaging particles. Renitence was evident in macrophages activated with LPS plus IFNγ, PGE2 , or adenosine, and in macrophages stimulated with IFN-ß, but not in macrophages activated with IL-4 or IL-10. These responses indicated roles for macrophage subtypes specialized in host defense and suppression of immune responses, but not those involved in wound healing. Consistent with this pattern, renitence could be induced by stimulation with agonists for TLR, which required the signaling adaptors MyD88 and/or TRIF, and by infection with murine norovirus-1. Renitence induced by LPS was dependent on cytokine secretion by macrophages. However, no single secreted factor could explain all the induced responses. Renitence induced by the TLR3 agonist Poly(I:C) was mediated in part by the type I IFN response, but renitence induced by Pam3CSK4 (TLR2/1), LPS (TLR4), IFNγ, or TNFα was independent of type 1 IFN signaling. Thus, multiple pathways for inducing macrophage resistance to membrane damage exist and depend on the particular microbial stimulus sensed.


Subject(s)
Lipopolysaccharides , Tumor Necrosis Factor-alpha , Animals , Lysosomes/metabolism , Macrophages/metabolism , Mice , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33560198

ABSTRACT

A long-standing paradigm in virology was that non-enveloped viruses induce cell lysis to release progeny virions. However, emerging evidence indicates that some non-enveloped viruses exit cells without inducing cell lysis, while others engage both lytic and non-lytic egress mechanisms. Enteric viruses are transmitted via the faecal-oral route and are important causes of a wide range of human infections, both gastrointestinal and extra-intestinal. Virus cellular egress, when fully understood, may be a relevant target for antiviral therapies, which could minimize the public health impact of these infections. In this review, we outline lytic and non-lytic cell egress mechanisms of non-enveloped enteric RNA viruses belonging to five families: Picornaviridae, Reoviridae, Caliciviridae, Astroviridae and Hepeviridae. We discuss factors that contribute to egress mechanisms and the relevance of these mechanisms to virion stability, infectivity and transmission. Since most data were obtained in traditional two-dimensional cell cultures, we will further attempt to place them into the context of polarized cultures and in vivo pathogenesis. Throughout the review, we highlight numerous knowledge gaps to stimulate future research into the egress mechanisms of these highly prevalent but largely understudied viruses.


Subject(s)
RNA Virus Infections/virology , RNA Viruses/classification , Virion/physiology , Virus Release , Animals , Humans , RNA Viruses/physiology
6.
Bio Protoc ; 10(14): e3687, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-33659357

ABSTRACT

Human astroviruses (HAstV) are non-enveloped, positive-sense single stranded RNA viruses that typically cause gastroenteritis in children, the elderly and among immunocompromised individuals. Some HAstV species have also been implicated in neurological diseases. It is important to study these viruses to understand the pathogenesis and develop therapeutics. Here we describe HAstV infection in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. Although different HAstV clades have been propagated in transformed immortalized cell lines such as A549, Caco-2, HEK293T and Huh7.5, we chose HIE because they better mimic the human intestine and thus are more physiologically relevant. Additionally, HIE support the replication of all HAstV clades including clinical samples, thus making HIE a valuable potential universal model to study HAstV biology.

7.
Can J Infect Dis Med Microbiol ; 2019: 7912186, 2019.
Article in English | MEDLINE | ID: mdl-31565106

ABSTRACT

BACKGROUND: Schistosomiasis is the second major human parasitic disease next to malaria, in terms of socioeconomic and public health consequences, especially in sub-Saharan Africa. Schistosoma haematobium (S. haematobium) is a trematode and one of the species of Schistosoma that cause urogenital schistosomiasis (urinary schistosomiasis). Although the knowledge of this disease has improved over the years, there are still endemic areas, with most of the reported cases in Africa, including Ghana. Not much has been done in Ghana to investigate cytological abnormalities in individuals within endemic communities, although there are epidemiologic evidences linking S. haematobium infection with carcinoma of the bladder. AIM: The aim of this study was to identify microscopic and cytological abnormalities in the urine deposits of S. haematobium-infected children. METHODOLOGY: Three hundred and sixty-seven (367) urine samples were collected from school children in Zenu and Weija communities. All the samples were examined microscopically for the presence of S. haematobium eggs, after which the infected samples and controls were processed for cytological investigation. RESULTS: S. haematobium ova were present in 66 (18.0%) out of the 367 urine samples. Inflammatory cells (82%, 54/66), hyperkeratosis (47%, 31/66), and squamous cell metaplasia (24%, 16/66) were the main observations made during the cytological examination of the S. haematobium-infected urine samples. CONCLUSION: Cytological abnormalities in S. haematobium-infected children may play an important role in the severity of the disease, leading to the possible development of bladder cancer in later years, if early attention is not given. Therefore, routine cytological screening for urogenital schistosomiasis patients (especially children) at hospitals in S. haematobium-endemic locations is recommended.

SELECTION OF CITATIONS
SEARCH DETAIL