Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0294579, 2024.
Article in English | MEDLINE | ID: mdl-38451893

ABSTRACT

The cacao swollen shoot virus disease (CSSVD) is among the most economically damaging diseases of cacao trees and accounts for almost 15-50% of harvest losses in Ghana. This virus is transmitted by several species of mealybugs (Pseudococcidae, Homoptera) when they feed on cacao plants. One of the mitigation strategies for CSSVD investigated at the Cocoa Research Institute of Ghana (CRIG) is the use of mild-strain cross-protection of cacao trees against the effects of severe strains. In this study, simple deterministic, delay, and stochastic ordinary differential equation-based models to describe the dynamic of the disease and spread of the virus are suggested. Model parameters are estimated using detailed empirical data from CRIG. The modeling outcomes demonstrate a remarkable resemblance between real and simulated dynamics. We have found that models with delay approximate the data better and this agrees with the knowledge that CSSVD epidemics develop slowly. Also, since there are large variations in the data, stochastic models lead to better results. We show that these models can be used to gain useful informative insights about the nature of disease spread.


Subject(s)
Badnavirus , Cacao , Coinfection , Viruses
2.
J Cell Mol Med ; 27(4): 587-590, 2023 02.
Article in English | MEDLINE | ID: mdl-36722323

ABSTRACT

XPO1 (Exportin-1) is the nuclear export protein responsible for the normal shuttling of several proteins and RNA species between the nucleocytoplasmic compartment of eukaryotic cells. XPO1 recognizes the nuclear export signal (NES) of its cargo proteins to facilitate its export. Alterations of nuclear export have been shown to play a role in oncogenesis in several types of solid tumour and haematologic cancers. Over more than a decade, there has been substantial progress in targeting nuclear export in cancer using selective XPO1 inhibitors. This has resulted in recent approval for the first-in-class drug selinexor for use in relapsed, refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL). Despite these successes, not all patients respond effectively to XPO1 inhibition and there has been lack of biomarkers for response to XPO1 inhibitors in the clinic. Using haematologic malignancy cell lines and samples from patients with myelodysplastic neoplasms treated with selinexor, we have identified XPO1, NF-κB(p65), MCL-1 and p53 protein levels as protein markers of response to XPO1 inhibitor therapy. These markers could lead to the identification of response upon XPO1 inhibition for more accurate decision-making in the personalized treatment of cancer patients undergoing treatment with selinexor.


Subject(s)
Hematologic Neoplasms , Multiple Myeloma , Humans , Karyopherins/genetics , Active Transport, Cell Nucleus , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...