Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e31243, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803890

ABSTRACT

The consumption of added sugars has been a major concern among consumers and researchers around the world. Some of these added sugars pose health threats such as obesity, and liver diseases to consumers. Therefore, consumers' understanding and knowledge of added sugars is important in regulating the intake of food items that contain different types and levels of added sugar. In this study, the knowledge and understanding of staff (consumers) of the University of Energy and Natural Resources, Ghana, was assessed through survey The results showed that about 38.5 % of consumers always read food labels whereas 3.1 % never read the labels of food they purchased. However, only about 20 % of consumers considered added sugars as most important information on food labels while most (about 38 %) were concerned about the calorie level in food items purchased. Based on the consumer's knowledge of sugars and sweeteners, there was a high level of disparity in classifying sugars in food as sugars and sweeteners. In addition, most consumers reported that they would adversely avoid food items containing lactose, isoglucose, and saccharin. The awareness of the consumers to the WHO recommendation for sugar reduction, the gender (P = 0.278), age (P = 0.959), level of education (P = 0.888), and staff category (P = 0.944) did not influence their decisions on purchasing food items with added sugars Most consumers were interested in issues of food and nutrition. Therefore, it is recommended that staff are taken through aspects of food nutrition as well as the consumption of added sugar towards the recommended levels.

2.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38364315

ABSTRACT

The objective of this study is to validate the US Food and Drug Administration (FDA) rea-time polymerase chain reaction (qPCR) assay, the Neogen Amplified Nucleic Single Temperature Reaction (ANSR) assay, and the Vitek ImmunoDiagnostic Assay System (VIDAS) SLM procedure against the FDA cultural procedure for Salmonella detection in green chile pepper. Green chile was artificially contaminated with Salmonella according to the FDA guidelines (FDA. Guidelines for the Validation of Microbiological Methods for the FDA Foods Program, 3rd Edition. 2019. www.fda.gov/media/83812/download?attachment (17 March 2024, date last accessed)) at a fractional recovery level (where 50%-25% tests positive and at a level +1 log greater for each organism tested). Enriched samples were tested directly by the ANSR Salmonella test and by qPCR, and were subcultured into Rappaport-Vassiliadis and tetrathionate brilliant green broth for cultural detection and qPCR. For the VIDAS-SLM assay, the selective enrichments were further cultured in M broth before testing. Presumptive salmonellae were confirmed with biochemical tests, serology, and qPCR. All three rapid assays were compared favorably with the FDA-BAM (Bacteriological Analytical Manual) method. No significant differences at P < .05 were found between the procedures using McNemar's χ2 test. The three procedures were found to be rapid and reliable alternatives to cultural detection of Salmonella enterica in green chile.


Subject(s)
Food Microbiology , Salmonella enterica , Culture Media , Salmonella enterica/genetics , Chile , Bacteriological Techniques/methods , Salmonella
3.
Foods ; 12(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36981134

ABSTRACT

The purpose of this study was to evaluate the survival rates and fermentation performance of three freeze-dried lactic acid bacterial cultures previously isolated from Ghanaian traditional fermented milk. LAB cultures, i.e., Lactobacillus delbrueckii, Lactococcus lactis and Leuconostoc mesenteroides, were frozen in the chamber of a Telstar (Lyoquest) laboratory freeze dryer for 10 h at -55 °C (as single and combined cultures) using skimmed milk and cassava flour as cryoprotectants held in plastic or glass cryovials. For viability during storage, freeze-dried LAB cultures were stored in a refrigerator (4 °C) and at room temperature (25 °C) for 4 weeks. The survival of freeze-dried cultures was determined by growth kinetics at 600 nm (OD600). The performance of freeze-dried LAB cultures after 4 weeks of storage was determined by their growth, acidification of milk during yogurt fermentation and consumer sensory evaluation of fermented milk using a nine-point hedonic scale. The survival rates for LAB ranged between 60.11% and 95.4% following freeze-drying. For single cultures, the highest survival was recorded for Lactobacillus delbrueckii (L12), whereas for combined cultures, the highest survival was observed for Lactococcus lactis (L3) combined with Lactobacillus delbrueckii (L12). The consumer acceptability results showed that yogurts produced from a combined starter culture of Lactococcus lactis and Lactobacillus delbrueckii or from a single culture of Lactococcus lactis were the most preferred products with Lactococcus lactis and Lactobacillus delbrueckii possessing high survival rates and high consumer acceptability in yogurt production. These findings are crucial and can be adopted for large-scale production and commercialization of yogurt.

4.
Crit Rev Food Sci Nutr ; 62(4): 871-888, 2022.
Article in English | MEDLINE | ID: mdl-33030021

ABSTRACT

Fermented food condiments serve as a major source of nutrients to many homes in West Africa, especially among the rural poor who use these condiments as a cheap source of protein substitute for milk and other animal protein sources. Traditional fermented West African condiments are produced by spontaneous fermentation of legumes and protein-rich seeds of both cultivated and wild plant species. These fermented condiments are culturally accepted and widely produced in the West African sub-region, and rely on indigenous microbiota responsible for taste, texture, aroma development and the overall unique product characteristics. Detailed understanding of fermentation microbiota and their unique technological and functional properties are fundamental in developing products with enhanced quality and safety, as well as development of specific locally adapted starter cultures. Technologically relevant Bacillus spp., mainly Bacillus subtilis, are the predominant fermentative bacteria responsible for the natural fermentation of condiments across West Africa. Other species of Bacillus including B. amyloliquefaciens, B. licheniformis, B. pumilus, B. megaterium, B. sphaericus, B. cereus, B. badius and B. fusiformis are also frequently involved in the fermentation process. These bacterial species are responsible for flavor development, bio-conversion of complex food molecules, and production of antimicrobial compounds that impact shelf-life and safety, and in some instances, may confer host-beneficial health effects beyond basic nutrition. First, this review provides currently available information on the technologically relevant Bacillus species isolated from fermented food condiments in nine (9) West African countries. In addition, perspectives on harnessing the potentials of the technologically beneficial bacterial strains in fermented condiments in West Africa for enhanced food safety, quality and overall food security is presented.


Subject(s)
Bacillus , Fermented Foods , Animals , Condiments , Fermentation , Food Microbiology , Seeds
5.
Trop Dis Travel Med Vaccines ; 7(1): 26, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34521480

ABSTRACT

Listeriosis, caused by Listeria spp., presents varying clinical manifestations among individuals, from moderate fecal infections such as diarrhea to severe infections such as septicemia, meningitis and abortion or newborn listeriosis in perinatal patients. In Africa, listeriosis is attributed to poor sanitation and cross-contamination in food processing environments, particularly ready to eat (RTE) foods including dairy products, leafy vegetables, fish and meat. Despite the global increase in reported cases and research on listeriosis, data from Africa remains scarce and this could lead to possible underestimation of the importance of listeriosis on the continent. This paper therefore presents a comprehensive overview of currently available reports on Listeria spp. in Africa with emphasis on molecular characteristics, antimicrobial susceptibility, and prevalence in food, animal and environmental samples. The majority of studies on Listeria spp. in Africa have so far focused on the prevalence and antibiotic susceptibility of L. monocytogenes isolated from RTE foods and raw meat but rarely from humans, animals, and the environment. The overall calculated average prevalence values from the available reports are 23.7 and 22.2% for Listeria spp. and L. monocytogenes, respectively. Listeria spp. isolated from different parts of Africa are generally sensitive to ciprofloxacin, but resistant to penicillin. The majority of these studies employed conventional culture and biochemical tests to characterize Listeria spp. However, the use of modern molecular techniques such as PCR and whole-genome sequencing is on the rise. Most of the studies employing molecular tools were carried out in South Africa and Nigeria, with the predominant strain reported in South Africa being ST6. In order to provide a better understanding of the importance of listeria in Africa, there is the need for extensive and coordinated studies using modern molecular-based techniques to characterize the various Listeria species, and to assess the disease epidemiology using the one health concept.

6.
World J Microbiol Biotechnol ; 37(3): 52, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33594545

ABSTRACT

Fermented milk products are a major source of health-promoting microorganisms known as probiotics. To characterize the probiotic properties of lactic acid bacteria isolated from Ghanaian traditionally fermented milk, thirty (30) isolates comprising Enterococcus faecium (1), Lactobacillus fermentum (14), Lb. plantarum (2) and Pediococcus acidilactici (13) identified by 16S rRNA gene sequencing, were tested for survival at low pH (2.5) and bile salts (0.3% (w/v)), hydrophobicity, co-aggregation, auto-aggregation and antimicrobial activities against selected pathogens. Safety of potential probiotic bacteria was assessed by hemolytic activity on blood agar and susceptibility to nine different antibiotics. Majority (90%) of the strains showed survival rates above 80% at pH (2.5) and in bile salts (0.3% (w/v)). Hydrophobicity ranged from 5 to 61% while cell auto-aggregation ranged from 41 to 80% after 24 h. Co-aggregation with E. coli (3.7-43.9%) and S. Typhimurium (1.3-49.5%) were similar for the LAB strains at 24 h. Cell- free supernatants of all LAB strains inhibited E. coli while S. Typhimurium was not sensitive to cell-free supernatants of five Pd. acidilactici strains: OS24h20, OS18h3, OY9h19, OS9h8 and 24NL38. None of the LAB strains showed ß-hemolysis but 38% of strains showed α-hemolysis. Susceptibilities to antibiotics were strain-specific; only four strains, two Lb. fermentum and two Pd. acidilactici were susceptible to all nine antibiotics tested. Based on high survival rates in bile salts, low pH and generally good hydrophobicity, auto-aggregation, co-aggregation and inhibitory activities, 15 out of 30 strains tested were considered qualified candidates for development of probiotic cultures for fermented milk products in sub-Saharan Africa.


Subject(s)
Cultured Milk Products/microbiology , Lactobacillales/classification , Probiotics/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bile Acids and Salts , Drug Tolerance , Escherichia coli/genetics , Fermentation , Ghana , Hydrogen-Ion Concentration , Lactobacillales/drug effects , Lactobacillales/genetics , Lactobacillales/isolation & purification , Milk/microbiology , RNA, Ribosomal, 16S/genetics
7.
Yeast ; 37(9-10): 403-412, 2020 09.
Article in English | MEDLINE | ID: mdl-32678933

ABSTRACT

The yeast species Saccharomyces cerevisiae and Kluyveromyces marxianus are associated with fermentation of West African indigenous foods. The aim of this study was to characterize potential probiotic properties of S. cerevisiae and K. marxianus isolates from the West African milk products lait caillé and nunu and a cereal-based product mawè. The strains (14 in total) were identified by 26S rRNA gene sequencing and characterized for survival at gastrointestinal stress (bile salts and low pH) and adhesion to Caco-2 intestinal epithelial cells. Selected yeast isolates were tested for their effect on the transepithelial electrical resistance (TEER), using the intestinal epithelial cell line Caco-2 and for maintenance of intracellular pH (pHi ) during perfusion with gastrointestinal pH (3.5 and 6.5). All tested yeasts were able to grow in bile salts in a strain-dependent manner, exhibiting a maximum specific growth rate (µmax ) of 0.58-1.50 h-1 . At pH 2.5, slow growth was observed for the isolates from mawè (µmax of 0.06-0.80 h-1 ), whereas growth of yeasts from other sources was mostly inhibited. Yeast adhesion to Caco-2 cells was strain specific and varied between 8.0% and 36.2%. Selected strains of S. cerevisiae and K. marxianus were able to maintain the pHi homeostasis at gastrointestinal pH and to increase TEER across the Caco-2 monolayers, indicating their potential to improve intestinal barrier functions. Based on overall results, strains of K. marxianus and S. cerevisiae from mawè exhibited the highest probiotic potential and might be recommended for further development as starter cultures in West African fermented products.


Subject(s)
Edible Grain/microbiology , Fermentation , Fermented Foods/microbiology , Kluyveromyces/metabolism , Milk/microbiology , Probiotics/isolation & purification , Saccharomyces cerevisiae/metabolism , Africa, Western , Animals , Caco-2 Cells , Cell Culture Techniques , Culture Media/chemistry , Epithelial Cells/microbiology , Food Microbiology , Humans , Hydrogen-Ion Concentration , Kluyveromyces/genetics , Probiotics/analysis , Saccharomyces cerevisiae/genetics
8.
Microorganisms ; 8(5)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429521

ABSTRACT

In Africa, milk production, processing and consumption are integral part of traditional food supply, with dairy products being a staple component of recommended healthy diets. This review provides an overview of the microbial safety characteristics of milk production and fermented dairy products in Africa. The object is to highlight the main microbial food safety hazards in the dairy chain and to propose appropriate preventive and control measures. Pathogens of public health concern including Mycobacterium bovis, Brucella abortus and Coxiella burnettii, which have largely been eradicated in many developed nations, still persist in the dairy chain in Africa. Factors such as the natural antimicrobial systems in milk and traditional processing technologies, including fermentation, heating and use of antimicrobial additives, that can potentially contribute to microbial safety of milk and dairy products in Africa will be discussed. Practical approaches to controlling safety hazards in the dairy chain in Africa have been proposed. Governmental regulatory bodies need to set the necessary national and regional safety standards, perform inspections and put measures in place to ensure that the standards are met, including strong enforcement programs within smallholder dairy chains. Dairy chain actors would require upgraded knowledge and training in preventive approaches such as good agricultural practices (GAP), hazard analysis and critical control points (HACCP) design and implementation and good hygienic practices (GHPs). Food safety education programs should be incorporated into school curricula, beginning at the basic school levels, to improve food safety cognition among students and promote life-long safe food handling behaviour.

9.
Crit Rev Food Sci Nutr ; 60(6): 991-1006, 2020.
Article in English | MEDLINE | ID: mdl-30668144

ABSTRACT

Africa is known for its rich, ancient tradition in fermented foods. Among these, fermented dairy products represent one category that is widely consumed, contributing to the socio-economic development and food security of the people. In Africa, traditional food fermentation lends itself as a relatively cheap food processing technology that often improves shelf life/food safety as well as nutrition and health via improvement in the levels of specific micronutrients and the action of probiotics. A range of African fermented dairy products (mainly yoghurt-like products) are produced by spontaneous fermentation, and these fermented dairy products harbor rich and valuable microbial diversity, predominated by lactic acid bacteria and yeasts. Detailed knowledge of the production processes, microbiological and biochemical aspects of traditional African dairy fermentation is critical for the development of products with enhanced quality, safety and health benefits for a sustainable food security in the region. This review therefore provides a comprehensive overview of the traditional African fermented dairy processing technology, as well as technologically relevant microorganisms and health benefits associated with fermented dairy products. Efforts aimed at harnessing the functional food potential of these fermented products could help control some food and health challenges facing many countries in the region.


Subject(s)
Cultured Milk Products , Food Microbiology , Probiotics , Africa , Fermentation
10.
Front Microbiol ; 10: 1789, 2019.
Article in English | MEDLINE | ID: mdl-31447811

ABSTRACT

Indigenous fermented food and beverages represent a valuable cultural heritage in sub-Saharan Africa, having one of the richest selections of fermented food products in the world. In many of these indigenous spontaneously fermented food and beverages, yeasts are of significant importance. Several factors including raw materials, processing methods, hygienic conditions as well as the interactions between yeasts and other commensal microorganisms have been shown to influence yeast species diversity and successions. Both at species and strain levels, successions take place due to the continuous change in intrinsic and extrinsic growth factors. The selection pressure from the microbial stress factors leads to niche adaptation and both yeast species and strains with traits deviating from those generally acknowledged in current taxonomic keys, have been isolated from indigenous sub-Saharan African fermented food products. Yeasts are important for flavor development, impact shelf life, and nutritional value and do, in some cases, even provide host-beneficial effects. In order to sustain and upgrade these traditional fermented products, it is quite important to obtain detailed knowledge on the microorganisms involved in the fermentations, their growth requirements and interactions. While other publications have reported on the occurrence of prokaryotes in spontaneously fermented sub-Saharan food and beverages, the present review focuses on yeasts considering their current taxonomic position, relative occurrence and successions, interactions with other commensal microorganisms as well as beneficial effects and importance in human diet. Additionally, the risk of opportunistic yeasts is discussed.

11.
Int J Food Sci ; 2017: 4656814, 2017.
Article in English | MEDLINE | ID: mdl-29082236

ABSTRACT

The objective of this work was to determine the effects of blanching and two drying methods, open-sun drying and natural convection solar drying, on the quality characteristics of red pepper. A 2 × 3 factorial design with experimental factors as 2 drying methods (open-sun drying and use of solar dryer) and 3 levels of pepper blanching (unblanched, blanched in plain water, and blanched in 2% NaCl) was conducted. Dried pepper samples were analysed for chemical composition, microbial load, and consumer sensory acceptability. Blanching of pepper in 2% NaCl solution followed by drying in a natural convection solar dryer reduced drying time by 15 hours. Similarly, a combination of blanching and drying in the solar dryer improved microbial quality of dried pepper. However, blanching and drying processes resulted in reduction in nutrients such as vitamin C and minerals content of pepper. Blanching followed by drying in natural convection solar dryer had the highest consumer acceptability scores for colour and overall acceptability, while texture and aroma were not significantly (p > 0.05) affected by the different treatments. Therefore, natural convection solar dryer can be used to dry pepper with acceptable microbial and sensory qualities, as an alternative to open-sun drying.

12.
BMC Microbiol ; 17(1): 65, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28288581

ABSTRACT

BACKGROUND: B. cereus are of particular interest in food safety and public health because of their capacity to cause food spoilage and disease through the production of various toxins. The aim of this study was to determine the prevalence, virulence factor genes and antibiotic resistance profile of B. cereus sensu lato isolated from cattle grazing soils and dairy products in Ghana. A total of 114 samples made up of 25 soil collected from cattle grazing farm land, 30 raw milk, 28 nunu (yoghurt-like product) and 31 woagashie (West African soft cheese). Ninety-six B. cereus sensu lato isolates from 54 positive samples were screened by PCR for the presence of 8 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK and entFM), and one emetic gene (ces). Phenotypic resistance to 15 antibiotics were also determined for 96 B. cereus sensu lato isolates. RESULTS: About 72% (18 of 25 soil), 47% (14 of 30 raw milk), 35% (10 of 28 nunu) and 39% (12 of 31 woagashi) were positive for B. cereus sensu lato with mean counts (log10 cfu/g) of 4.2 ± 1.8, 3.3 ± 2.0, 1.8 ± 1.4 and 2.6 ± 1.8 respectively. The distribution of enterotoxigenic genes revealed that 13% (12/96 isolates) harboured all three gene encoding for haemolytic enterotoxin HBL complex genes (hblA, hblC and hblD), 25% (24/96 isolates) possessed no HBL gene, whereas 63% (60/96 isolates) possessed at least one of the three HBL genes. All three genes encoding for non-haemolytic enterotoxin (nheA, nheB and nheC) were detected in 60% (57/96) isolates, 14% (13/96) harboured only one gene, 19% (18/96) whereas 8% possessed none of the NHE genes. The detection rates of cytk, entFM, and ces genes were 75, 67 and 9% respectively. Bacillus cereus s. l. isolates were generally resistant to ß-lactam antibiotics such as ampicillin (98%), oxacillin (92%), penicillin (100%), amoxicillin (100%), and cefepime (100%) but susceptible to other antibiotics tested. CONCLUSIONS: Bacillus cereus s. l. is prevalent in soil, raw milk and dairy products in Ghana. However, loads are at levels considered to be safe for consumption. Various enterotoxin genes associated with virulence of B. cereus are widespread among the isolates.


Subject(s)
Bacillus cereus/genetics , Bacillus cereus/isolation & purification , Dairy Products/microbiology , Drug Resistance, Bacterial , Food Microbiology , Virulence Factors/genetics , Animals , Cattle , DNA, Bacterial/genetics , Enterotoxins/genetics , Farms , Food Safety , Genes, Bacterial/genetics , Ghana , Microbial Sensitivity Tests , Phylogeny , Polymerase Chain Reaction , Soil Microbiology
13.
BMC Public Health ; 17(1): 40, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28061850

ABSTRACT

BACKGROUND: In large scale cooking, food is handled by many individuals, thereby increasing the chances of food contamination due to improper handling. Deliberate or accidental contamination of food during large scale production might endanger the health of consumers, and have very expensive repercussions on a country. The purpose of this study was to evaluate the food safety knowledge, attitudes, and practices among institutional food- handlers in Ghana. METHODS: The study was conducted using a descriptive, cross-sectional survey of 29 institutions by conducting face to face interview and administration of questionnaire to two hundred and thirty-five (235) institutional food-handlers. The questionnaire was peer-reviewed and pilot tested in three institutions in the Upper East Region of Ghana, before the final version was distributed to food-handlers. The questionnaire was structured into five distinctive parts to collect information on (i) demographic characteristics, (ii) employees' work satisfaction, (iii) knowledge on food safety, (iv) attitudes towards food safety and (v) food hygiene practices. RESULTS: Majority of the food-handlers were between 41-50 years (39.1%). Female respondents were (76.6%). In our study, the food-handlers were knowledgeable about hygienic practices, cleaning and sanitation procedures. Almost all of the food-handlers were aware of the critical role of general sanitary practices in the work place, such as hand washing (98.7% correct answers), using gloves (77.9%), proper cleaning of the instruments/utensils (86.4%) and detergent use (72.8%). On disease transmission, the results indicates that 76.2% of the food- handlers did not know that Salmonella is a food borne pathogens and 70.6% did not know that hepatitis A is a food borne pathogen. However, 81.7% handlers agreed that typhoid fever is transmitted by food and 87.7% agreed that bloody diarrhea is transmitted by food. Logistic regression analysis testing four models showed statistically significant differences (p < 0.05), for models in which the explanatory variable was the level of education. CONCLUSIONS: In generally, the institutional food-handlers have satisfactory knowledge in food safety but this does not translate into strict hygienic practices during processing and handling food products.


Subject(s)
Food Contamination/prevention & control , Food Handling/methods , Food Safety/methods , Health Knowledge, Attitudes, Practice , Adult , Cross-Sectional Studies , Female , Ghana , Hand Disinfection , Humans , Hygiene , Male , Middle Aged , Sanitation , Surveys and Questionnaires
14.
BMC Microbiol ; 15: 261, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26560346

ABSTRACT

BACKGROUND: Throughout Africa, food fermentations are still driven by indigenous microorganisms which influence the nutritional, organoleptic and safety of the final products. However, for improved safety, consistent quality and beneficial health effects, a trend has emerged which involves the isolation of indigenous strains from traditional fermented products to be used as functional starter cultures. These functional starter cultures possess inherent functional characteristics and can contribute to food quality and safety by offering one or more organoleptic, nutritional, technological or health advantage (probiotics). With the aim of selecting potential probiotic starter cultures, Lactobacillus fermentum strains isolated from fermented millet dough were investigated for technological properties and probiotic traits in-vitro. RESULTS: A total of 176 L. fermentum strains were assessed for technological properties including rate of acidification, exopolysaccharide production and amylase activity. Following this, 48 strains showing desirable technological properties were first screened for acid resistance. Sixteen acid resistant strains were assessed for additional probiotic properties including resistance to bile salts, bile salt hydrolysis, antimicrobial property, haemolysis and antibiotics resistance. L. fermentum strains clustered into 3 groups represented by 36 %, 47 % and 17 % as fast, medium and slow acidifiers respectively. About 8 %, 78 % and 14 % of the strains showed strong, weak and no exopolysaccharides production respectively. Amylase activity was generally weak or not detected. After exposure of 48 L. fermentum strains to pH 2.5 for 4 h, 16 strains were considered to be acid resistant. All 16 strains were resistant to bile salt. Four strains demonstrated bile salt hydrolysis. Antimicrobial activity was observed towards Listeria monocytogenes and Staphylococcus aureus but not E. coli and Salmonella enteritidis. Lactobacillus fermentum strains were generally susceptible to antibiotics except 6 strains which showed resistance towards streptomycin, gentamicin and kanamycin. CONCLUSION: In vitro determination of technological and probiotic properties have shown strain specific difference among L. fermentum strains isolated from fermented millet dough. Sixteen (16) L. fermentum strains have been shown to possess desirable technological and probiotic characteristics in vitro. These strains are therefore good candidates for further studies to elucidate their full potential and possible application as novel probiotic starter cultures.


Subject(s)
Limosilactobacillus fermentum/isolation & purification , Millets/microbiology , Probiotics/analysis , Africa , Fermentation , Food Technology , In Vitro Techniques , Limosilactobacillus fermentum/chemistry , Limosilactobacillus fermentum/classification , Microbial Sensitivity Tests , Probiotics/classification
15.
Int J Food Sci ; 2014: 721067, 2014.
Article in English | MEDLINE | ID: mdl-26904646

ABSTRACT

Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB) previously isolated and identified from Nunu product were assessed in vitro for their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities). Following the determination of technological properties, Lactobacillus fermentum 22-16, Lactobacillus plantarum 8-2, Lactobacillus helveticus 22-7, and Leuconostoc mesenteroides 14-11 were used as single and combined starter cultures for Nunu fermentation. Starter culture fermented Nunu samples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging to Lactobacillus helveticus, L. plantarum, L. fermentum, and Leu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 µg/mL) was observed for 50% Leu. mesenteroides, 40% L. fermentum, 41% L. helveticus, 27% L. plantarum, and 10% Ent. faecium species. In starter culture fermented Nunu samples, all amino acids determined were detected in Nunu fermented with single starters of L. plantarum and L. helveticus and combined starter of L. fermntum and L. helveticus. Consumer sensory analysis showed varying degrees of acceptability for Nunu fermented with the different starter cultures.

16.
Food Microbiol ; 34(2): 277-83, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23541194

ABSTRACT

Produced from raw unpasteurized milk, nunu is a spontaneously fermented yoghurt-like product made in Ghana and other parts of West Africa. Despite the importance of nunu in the diet of many Africans, there is currently only limited information available on the microorganisms associated with nunu processing. With the aim of obtaining a deeper understanding of the process and as a first step towards developing starter cultures with desired technological properties for nunu production, a microbiological characterization of nunu processing in three different towns in the Upper East region of Ghana, namely Bolgatanga, Paga and Navrongo, was carried out. Lactic acid bacteria (LAB) and yeasts associated with nunu processing were isolated and identified using a combination of pheno- and genotypic methods including morphological and carbohydrate fermentation tests, (GTG)5-based rep-PCR, multiplex PCR, and 16S and 26S rRNA gene sequencing. The LAB counts during nunu processing increased from 4.5 ± 0.4 log cfu/ml at 0 h to 8.7 ± 1.8 log cfu/ml at 24 h of fermentation while yeasts counts increased from 2.8 ± 1.2 log cfu/ml at 0 h to 5.8 ± 0.5 log cfu/ml by the end of fermentation. Lactobacillus fermentum was the dominant LAB throughout the fermentations with Lactobacillus plantarum and Leuconostoc mesenteroides playing prominent roles during the first 6-8 h of fermentation as well. Less frequently isolated LAB included Lactobacillus helveticus, Enterococcus faecium, Enterococcus italicus, Weissella confusa and a putatively novel Lactococcus spp. The yeasts involved were identified as Candida parapsilosis, Candida rugosa, Candida tropicalis, Galactomyces geotrichum, Pichia kudriavzevii and Saccharomyces cerevisiae with P. kudriavzevii and S. cerevisiae being the dominant yeast species.


Subject(s)
Cultured Milk Products/microbiology , Lactobacillaceae/classification , Lactobacillaceae/isolation & purification , Yeasts/classification , Yeasts/isolation & purification , Fermentation , Ghana , Lactic Acid/metabolism , Lactobacillaceae/genetics , Lactobacillaceae/metabolism , Molecular Sequence Data , Phylogeny , Yeasts/genetics , Yeasts/metabolism
17.
Int J Food Microbiol ; 159(2): 144-51, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23072700

ABSTRACT

Fura is a spontaneously fermented pearl millet product consumed in West Africa. The yeast species involved in the fermentation were identified by pheno- and genotypic methods to be Candida krusei, Kluyveromyces marxianus, Candida tropicalis, Candida rugosa, Candida fabianii, Candida norvegensis and Trichosporon asahii. C. krusei and K. marxianus were found to be the dominant species. Survival in pH 2.5 or in the presence of bile salts (0.3% (w/v) oxgall) and growth at 37°C were independently determined as indicators of the survival potential of the isolates during passage through the human gastrointestinal tract. Selected yeast species isolates were assessed for their probiotic potential. All of the examined yeast isolates survived and grew at human gastrointestinal conditions in pH 2.5, 0.3% (w/v) oxgall at 37°C. The effect on the transepithelial electrical resistance (TEER) across polarized monolayers of intestinal epithelial cells of human (Caco-2) and porcine (IPEC-J2) origin, were determined. The Caco-2 cells and IPEC-J2 cells displayed clearly different relative TEER results. The strains of C. krusei, K. marxianus, C. rugosa and T. asahii were able to increase the relative TEER of Caco-2 monolayers after 48h. In comparison, the relative TEER of IPEC-J2 monolayers decreased when exposed to the same yeasts, even though T. asahii did not differ significantly from Saccharomyces cerevisiae var. boulardii which is used as a human probiotic. C. tropicalis resulted in the largest relative TEER decrease for both the human and the porcine cell model assays. Hyphal growth was observed for C. albicans and C. tropicalis after 48h of incubation with polarized Caco-2 monolayers, whereas this was not the case for the remaining yeast species. In the present study new yeast strains with potential probiotic properties have been isolated to be used potentially as starter cultures for fura production.


Subject(s)
Biodiversity , Pennisetum/microbiology , Probiotics/isolation & purification , Yeasts/isolation & purification , Africa, Western , Animals , Candida/growth & development , Edible Grain/microbiology , Fermentation , Gastrointestinal Tract , Humans , Intestines/microbiology , Kluyveromyces , Saccharomyces
18.
Food Microbiol ; 32(1): 72-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22850376

ABSTRACT

Fura is a millet-based spontaneously fermented dumpling produced and consumed in parts of West Africa, particularly Nigeria, Burkina Faso and Ghana. From eight traditional fura production sites in northern Ghana, 862 lactic acid bacteria were isolated and identified to species level using a combination of genotypic and phenotypic methods including (GTG)(5)-based PCR fingerprinting and 16S rRNA gene sequencing, multiplex PCR by means of recA gene sequence comparison, conventional morphological characteristics and carbohydrate fermentation profiling. During millet dough fermentation, pH decreased from 5.6-6.4 to 4.1-3.7 and total lactic acid bacteria (LAB) counts increased from 4.4-5.3 to 7.9-9.2 log(10) (cfu/g). The initial stages of the fermentation were characterized by co-dominance of homo- and heterofermentative species of Pediococcus acidilactici, Weisella confusa, Lactobacillus fermentum, Lactobacillus reuteri, Lactobacillus salivarius, and Lactobacillus paraplantarum whereas L. fermentum was dominating at the end of the fermentation. L. fermentum was predominant in all fermentations (p < 0.05) and a high uniformity was observed among production sites regarding the dominance of L. fermentum. L. fermentum and W. confusa were isolated in all production sites and almost at all fermentation stages indicating that they are indigenous to traditional fura processing. The other LAB bacteria species which comprised a minor proportion of the total LAB occurred occasionally and in an irregular pattern among the production sites.


Subject(s)
Lactic Acid/metabolism , Lactobacillaceae/classification , Lactobacillaceae/isolation & purification , Panicum/microbiology , Fermentation , Food Handling , Ghana , Hydrogen-Ion Concentration , Lactobacillaceae/genetics , Lactobacillaceae/metabolism , Molecular Sequence Data , Panicum/chemistry , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...