Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(16): e2309621121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588415

ABSTRACT

Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via chromosome mis-segregation during cell division. In cancer, CIN exists at varying levels that have differential effects on tumor progression. However, mis-segregation rates remain challenging to assess in human cancer despite an array of available measures. We evaluated measures of CIN by comparing quantitative methods using specific, inducible phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluorescence microscopy, chromosome spreads, six-centromere FISH, bulk transcriptomics, and single-cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells in live and fixed samples significantly correlated (R = 0.72; P < 0.001) and sensitively detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere FISH, which also significantly correlate (R = 0.76; P < 0.001) but had limited sensitivity for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, CIN70 and HET70, did not detect CIN. By contrast, scDNAseq detects CIN with high sensitivity, and significantly correlates with imaging methods (R = 0.82; P < 0.001). In summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can measure CIN, with the latter being the most comprehensive method accessible to clinical samples. To facilitate the comparison of CIN rates between phenotypes and methods, we propose a standardized unit of CIN: Mis-segregations per Diploid Division. This systematic analysis of common CIN measures highlights the superiority of single-cell methods and provides guidance for measuring CIN in the clinical setting.


Subject(s)
Chromosomal Instability , Neoplasms , Humans , Cell Line, Tumor , Chromosomal Instability/genetics , Centromere , Karyotyping , Gene Expression Profiling , Chromosome Segregation , Aneuploidy
2.
bioRxiv ; 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37398147

ABSTRACT

Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via chromosome mis-segregation during cell division. In cancer, CIN exists at varying levels that have differential effects on tumor progression. However, mis-segregation rates remain challenging to assess in human cancer despite an array of available measures. We evaluated measures of CIN by comparing quantitative methods using specific, inducible phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluorescence microscopy, chromosome spreads, 6-centromere FISH, bulk transcriptomics, and single cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells in live and fixed samples correlated well (R=0.77; p<0.01) and sensitively detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere FISH, which also correlate well (R=0.77; p<0.01) but had limited sensitivity for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, CIN70 and HET70, did not detect CIN. By contrast, single-cell DNA sequencing (scDNAseq) detects CIN with high sensitivity, and correlates very well with imaging methods (R=0.83; p<0.01). In summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can measure CIN, with the latter being the most comprehensive method accessible to clinical samples. To facilitate comparison of CIN rates between phenotypes and methods, we propose a standardized unit of CIN: Mis-segregations per Diploid Division (MDD). This systematic analysis of common CIN measures highlights the superiority of single-cell methods and provides guidance for measuring CIN in the clinical setting.

3.
Genes Chromosomes Cancer ; 59(11): 627-638, 2020 11.
Article in English | MEDLINE | ID: mdl-32557940

ABSTRACT

Chromosome instability (CIN) generates genetic and karyotypic diversity that is common in hematological malignancies. Low to moderate levels of CIN are well tolerated and can promote cancer proliferation. However, high levels of CIN are lethal. Thus, CIN may serve both as a prognostic factor to predict clinical outcome and as a predictive biomarker. A retrospective study was performed to evaluate CIN in acute myeloid leukemia (AML). Chromosome mis-segregation frequency was correlated with clinical outcome in bone marrow core biopsy specimens from 17 AML cases. Additionally, we induced chromosome segregation errors in AML cell lines with AZ3146, an inhibitor of the Mps1 mitotic checkpoint kinase, to quantify the phenotypic effects of high CIN. We observed a broad distribution of chromosome mis-segregation frequency in AML bone marrow core specimens. High CIN correlated with complex karyotype in AML, as expected, although there was no clear survival effect. In addition to CIN, experimentally inducing chromosome segregation errors by Mps1 inhibition in AML cell lines causes DNA damage, micronuclei formation, and upregulation of interferon stimulated genes. High levels of CIN appear to be immunostimulatory, suggesting an opportunity to combine mitotic checkpoint inhibitors with immunotherapy in treatment of AML.


Subject(s)
Chromosomal Instability , Interferons/genetics , Leukemia, Myeloid, Acute/genetics , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cells, Cultured , Chromosome Segregation , DNA Damage , Humans , Interferons/metabolism , Karyotype , Leukemia, Myeloid, Acute/pathology , Mutagens/toxicity , Protein Kinase Inhibitors/toxicity , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Up-Regulation
4.
Proc Natl Acad Sci U S A ; 110(32): 13026-31, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23878225

ABSTRACT

In cell division, cytokinesis is tightly coupled with mitosis to maintain genomic integrity. Failed cytokinesis in humans can result in tetraploid cells that can become aneuploid and promote cancer. However, the likelihood of aneuploidy and cancer after a failed cytokinesis event is unknown. Here we evaluated cell fate after failed cytokinesis. We interrupted cytokinesis by brief chemical treatments in cell populations of human epithelial lines. Surprisingly, up to 50% of the resulting binucleate cells generated colonies. In RPE1 cells, 90% of colonies obtained from binucleate founders had a karyotype that matched the parental cell type. Time-lapse videomicroscopy demonstrated that binucleate cells are delayed in the first growth phase of the cell cycle (G1) and undergo interphase cellular fission (cytofission) that distributes nuclei into separate daughters. The fission is not compatible with delayed cytokinesis because events occur in the absence of polymerized microtubules and without canonical components of the cytokinetic machinery. However, the cytofission can be interrupted by inhibiting function of actin or myosin II. Fission events occur in both two- and three-dimensional culture. Our data demonstrate that cytofission can preserve genomic integrity after failed cytokinesis. Thus, traction-mediated cytofission, originally observed in Dictyostelium, is relevant to human biology--where it seems to be an evolutionarily conserved mechanism that can preserve genomic integrity.


Subject(s)
Cell Division/genetics , Cytokinesis/genetics , Genome, Human/genetics , Interphase/genetics , Aneuploidy , Cell Culture Techniques , Cell Cycle/genetics , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HCT116 Cells , Histones/genetics , Histones/metabolism , Humans , Karyotype , Microscopy, Fluorescence , Microscopy, Video/methods , Microtubules/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...