Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 120(33): 8238-53, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27150586

ABSTRACT

cTnI(P82S) (cTnI(P83S) in rodents) resides at the I-T arm of cardiac troponin I (cTnI) and was initially identified as a disease-causing mutation of hypertrophic cardiomyopathy (HCM). However, later studies suggested this may not be true. We recently reported that introduction of an HCM-associated mutation in either inhibitory-peptide (cTnI(R146G)) or cardiac-specific N-terminus (cTnI(R21C)) of cTnI blunts the PKA-mediated modulation on myofibril activation/relaxation kinetics by prohibiting formation of intrasubunit contacts between these regions. Here, we tested whether this also occurs for cTnI(P83S). cTnI(P83S) increased both Ca(2+) binding affinity to cTn (KCa) and affinity of cTnC for cTnI (KC-I), and eliminated the reduction of KCa and KC-I observed for phosphorylated-cTnI(WT). In isolated myofibrils, cTnI(P83S) maintained maximal tension (TMAX) and Ca(2+) sensitivity of tension (pCa50). For cTnI(WT) myofibrils, PKA-mediated phosphorylation decreased pCa50 and sped up the slow-phase relaxation (especially for those Ca(2+) conditions that heart performs in vivo). Those effects were blunted for cTnI(P83S) myofibrils. Molecular-dynamics simulations suggested cTnI(P83S) moderately inhibited an intrasubunit interaction formation between inhibitory-peptide and N-terminus, but this "blunting" effect was weaker than that with cTnI(R146G) or cTnI(R21C). In summary, cTnI(P83S) has similar effects as other HCM-associated cTnI mutations on troponin and myofibril function even though it is in the I-T arm of cTnI.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Mutation , Myofibrils/metabolism , Troponin I/metabolism , Amino Acid Substitution , Animals , Calcium/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/physiopathology , Cyclic AMP-Dependent Protein Kinases/genetics , Humans , Male , Molecular Dynamics Simulation , Myocardial Contraction/physiology , Myocardium/metabolism , Myocardium/pathology , Phenylalanine/metabolism , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Serine/metabolism , Troponin I/genetics
2.
J Phys Chem Lett ; 6(22): 4627-32, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26545303

ABSTRACT

Hydrogenated TiO2 (H-TiO2) is touted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using nuclear reaction analysis (NRA), Rutherford backscattering spectrometry, ultraviolet photoelectron spectroscopy, and X-ray photoelectron spectroscopy. Protons (40 keV) implanted at a ∼2 atom % level within a ∼120 nm wide profile of rutile TiO2(110) were situated ∼300 nm below the surface. NRA revealed that this H-profile broadened toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (∼800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile at low temperatures, as well as its interfacial activity toward reduction, significantly limits the utilization of H-TiO2 as a photocatalyst.

3.
J Biol Chem ; 290(46): 27749-66, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26391394

ABSTRACT

Two hypertrophic cardiomyopathy-associated cardiac troponin I (cTnI) mutations, R146G and R21C, are located in different regions of cTnI, the inhibitory peptide and the cardiac-specific N terminus. We recently reported that these regions may interact when Ser-23/Ser-24 are phosphorylated, weakening the interaction of cTnI with cardiac TnC. Little is known about how these mutations influence the affinity of cardiac TnC for cTnI (KC-I) or contractile kinetics during ß-adrenergic stimulation. Here, we tested how cTnI(R146G) or cTnI(R21C) influences contractile activation and relaxation and their response to protein kinase A (PKA). Both mutations significantly increased Ca(2+) binding affinity to cTn (KCa) and KC-I. PKA phosphorylation resulted in a similar reduction of KCa for all complexes, but KC-I was reduced only with cTnI(WT). cTnI(WT), cTnI(R146G), and cTnI(R21C) were complexed into cardiac troponin and exchanged into rat ventricular myofibrils, and contraction/relaxation kinetics were measured ± PKA phosphorylation. Maximal tension (Tmax) was maintained for cTnI(R146G)- and cTnI(R21C)-exchanged myofibrils, and Ca(2+) sensitivity of tension (pCa50) was increased. PKA phosphorylation decreased pCa50 for cTnI(WT)-exchanged myofibrils but not for either mutation. PKA phosphorylation accelerated the early slow phase relaxation for cTnI(WT) myofibrils, especially at Ca(2+) levels that the heart operates in vivo. Importantly, this effect was blunted for cTnI(R146G)- and cTnI(R21C)-exchanged myofibrils. Molecular dynamics simulations suggest both mutations inhibit formation of intra-subunit contacts between the N terminus and the inhibitory peptide of cTnI that is normally seen with WT-cTn upon PKA phosphorylation. Together, our results suggest that cTnI(R146G) and cTnI(R21C) blunt PKA modulation of activation and relaxation kinetics by prohibiting cardiac-specific N-terminal interaction with the cTnI inhibitory peptide.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Myocardial Contraction/physiology , Myofibrils/physiology , Troponin I/metabolism , Amino Acid Substitution , Animals , Arginine/genetics , Calcium/metabolism , Cysteine/genetics , Glycine/genetics , Humans , Male , Molecular Dynamics Simulation , Mutation , Myocardial Contraction/genetics , Phosphorylation , Protein Structure, Secondary , Rats , Rats, Sprague-Dawley , Troponin I/chemistry , Troponin I/genetics
4.
Biophys J ; 107(5): 1196-1204, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25185555

ABSTRACT

Protein kinase A (PKA) phosphorylation of myofibril proteins constitutes an important pathway for ß-adrenergic modulation of cardiac contractility and relaxation. PKA targets the N-terminus (Ser-23/24) of cardiac troponin I (cTnI), cardiac myosin-binding protein C (cMyBP-C) and titin. The effect of PKA-mediated phosphorylation on the magnitude of contraction has been studied in some detail, but little is known about how it modulates the kinetics of thin filament activation and myofibril relaxation as Ca(2+) levels vary. Troponin C (cTnC) interaction with cTnI (C-I interaction) is a critical step in contractile activation that can be modulated by cTnI phosphorylation. We tested the hypothesis that altering C-I interactions by PKA, or by cTnI phosphomimetic mutations (S23D/S24D-cTnI), directly affects thin filament activation and myofilament relaxation kinetics. Rat ventricular myofibrils were isolated and endogenous cTn was exchanged with either wild-type cTnI, or S23D/S24D-cTnI recombinant cTn. Contractile mechanics were monitored at maximum and submaximal Ca(2+) concentrations. PKA treatment of wild-type cTn or exchange of cTn containing S23D/S24D-cTnI resulted in an increase in the rate of early, slow phase of relaxation (kREL,slow) and a decrease in its duration (tREL,slow). These effects were greater for submaximal Ca(2+) activated contractions. PKA treatment also reduced the rate of contractile activation (kACT) at maximal, but not submaximal Ca(2+), and reduced the Ca(2+) sensitivity of contraction. Using a fluorescent probe coupled to cTnC (C35S-IANBD), the Ca(2+)-cTn binding affinity and C-I interaction were monitored. Ca(2+) binding to cTn (pCa50) was significantly decreased when cTnI was phosphorylated by PKA (ΔpCa50 = 0.31). PKA phosphorylation of cTnI also weakened C-I interaction in the presence of Ca(2+). These data suggest that weakened C-I interaction, via PKA phosphorylation of cTnI, may slow thin filament activation and result in increased myofilament relaxation kinetics, the latter of which could enhance early phase diastolic relaxation during ß-adrenergic stimulation.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Myocardial Contraction/physiology , Myofibrils/physiology , Troponin I/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Ions/metabolism , Kinetics , Mutation , Phosphorylation , Rats , Recombinant Proteins/metabolism , Troponin C/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...