Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 14(6): 1526-37, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15930001

ABSTRACT

Fibrillar collagens are the principal structural molecules of connective tissues. The assembly of collagen fibrils is regulated by quantitatively minor fibrillar collagens, types V and XI. A unique amino-terminal propeptide domain of these collagens has been attributed this regulatory role. The structure of the amino terminal propeptide has yet to be determined. Low sequence similarity necessitated a secondary structure-based method to carry out homology modeling based upon the determined structure of LNS family members, named for a common structure in the laminin LG5 domain, the neurexin 1B domain and the sex hormone binding globulin. Distribution of amino acids within the model suggested glycosaminoglycan interaction and calcium binding. These activities were tested experimentally. Sequence analyses of existing genes for collagens indicate that 16 known collagen alpha chains may contain an LNS domain. A similar approach may prove useful for structure/function studies of similar domains in other collagens with similar domains. This will provide mechanistic details of the organization and assembly of the extracellular matrix and the underlying basis of structural integrity in connective tissues. The absolute requirement for collagen XI in skeletal growth is indicated by collagen XI deficiencies such as chondrodystrophies found in the cho/cho mouse and in humans with Stickler syndrome.


Subject(s)
Collagen Type XI/chemistry , Amino Acid Sequence , Animals , Humans , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid
2.
J Biol Chem ; 279(12): 10939-45, 2004 Mar 19.
Article in English | MEDLINE | ID: mdl-14699108

ABSTRACT

Type XI collagen is a quantitatively minor yet essential constituent of the cartilage extracellular matrix. The amino propeptide of the alpha1 chain remains attached to the rest of the molecule for a longer period of time after synthesis than the other amino propeptides of type XI collagen and has been localized to the surface of thin collagen fibrils. Yeast two-hybrid system was used to demonstrate that a homodimer of alpha1(XI) amino propeptide (alpha1(XI)Npp) could form in vivo. Interaction was also confirmed using multi-angle laser light scattering, detecting an absolute weight average molar mass ranging from the size of a monomer to the size of a dimer (25,000-50,000 g/mol), respectively. Binding was shown to be saturable by ELISA. An interaction between recombinant alpha1(XI)Npp and the endogenous alpha1(XI)Npp was observed, and specificity for alpha1(XI)Npp but not alpha2(XI)Npp was demonstrated by co-precipitation. The interaction between the recombinant form of alpha1(XI)Npp and the endogenous alpha1(XI)Npp resulted in a stable association during the regeneration of cartilage extracellular matrix by fetal bovine chondrocytes maintained in pellet culture, generating a protein that migrated with an apparent molecular mass of 50-60 kDa on an SDS-polyacrylamide gel.


Subject(s)
Collagen Type XI/metabolism , Animals , Chromatography, Gel , Collagen Type XI/chemistry , Enzyme-Linked Immunosorbent Assay , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...