Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(4): e0285042, 2023.
Article in English | MEDLINE | ID: mdl-37115761

ABSTRACT

In 2020, the Department of Energy established the National Virtual Biotechnology Laboratory (NVBL) to address key challenges associated with COVID-19. As part of that effort, Pacific Northwest National Laboratory (PNNL) established a capability to collect and analyze specimens from employees who self-reported symptoms consistent with the disease. During the spring and fall of 2021, 688 specimens were screened for SARS-CoV-2, with 64 (9.3%) testing positive using reverse-transcriptase quantitative PCR (RT-qPCR). Of these, 36 samples were released for research. All 36 positive samples released for research were sequenced and genotyped. Here, the relationship between patient age and viral load as measured by Ct values was measured and determined to be only weakly significant. Consensus sequences for each sample were placed into a global phylogeny and transmission dynamics were investigated, revealing that the closest relative for many samples was from outside of Washington state, indicating mixing of viral pools within geographic regions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Clinical Laboratory Techniques , Phylogeny , RNA, Viral/analysis , Specimen Handling , Workplace , Washington
2.
Anal Chem ; 93(43): 14432-14439, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34669385

ABSTRACT

Accurate and comprehensive identification of residual glycerides in biodiesel is an important part of fuel characterization due to the impact of glycerides on the fuel physicochemical properties. However, analysis of bound glycerol in biodiesel samples faces challenges due to lack of readily available standards of structurally complex glyceride species in nontraditional biodiesel feedstocks and a risk of misannotation in the presence of impurities in gas chromatographic separations. Here, we evaluate methane and isobutane chemical ionization-single quadrupole mass spectrometry combined with high-temperature gas chromatography separations for mapping monoacylglycerols, diacylglycerols, and triacylglycerols in biodiesel. Unlike electron impact ionization, which produces mostly in-source fragments, isobutane chemical ionization spectra of tetramethylsilyl-derivatized monoacylglycerols and diacylglycerols are dominated by molecular ions and M-SiO(CH3)3+ ions, which provide important diagnostic information. We demonstrate the utility of isobutane chemical ionization in identifying structurally complex glycerolipid standards as well as species in biodiesel samples from different plant and animal feedstocks.


Subject(s)
Biofuels , Glycerides , Animals , Biofuels/analysis , Gas Chromatography-Mass Spectrometry , Glycerol/analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...