Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
2.
Science ; 372(6546): 1097-1101, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34083489

ABSTRACT

Water-stable isotopes in polar ice cores are a widely used temperature proxy in paleoclimate reconstruction, yet calibration remains challenging in East Antarctica. Here, we reconstruct the magnitude and spatial pattern of Last Glacial Maximum surface cooling in Antarctica using borehole thermometry and firn properties in seven ice cores. West Antarctic sites cooled ~10°C relative to the preindustrial period. East Antarctic sites show a range from ~4° to ~7°C cooling, which is consistent with the results of global climate models when the effects of topographic changes indicated with ice core air-content data are included, but less than those indicated with the use of water-stable isotopes calibrated against modern spatial gradients. An altered Antarctic temperature inversion during the glacial reconciles our estimates with water-isotope observations.

3.
Sci Adv ; 3(2): e1600446, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28246631

ABSTRACT

Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.

4.
J Phys Chem A ; 115(32): 8889-94, 2011 Aug 18.
Article in English | MEDLINE | ID: mdl-21744826

ABSTRACT

The dissociation of C(2)H(6) hydrate particles by slow depressurization at temperatures slightly below the ice melting point was studied using optical microscopy and Raman spectroscopy. Visual observations and Raman measurements revealed that ethane hydrates can be present as a metastable state at pressures lower than the dissociation pressures of the three components: ice, hydrate, and free gas. However, they decompose into liquid water and gas phases once the system pressure drops to the equilibrium boundary for supercooled water, hydrate, and free gas. Structural analyses of obtained Raman spectra indicate that structures of the metastable hydrates and liquid water from the hydrate decay are fundamentally identical to those of the stable hydrates and supercooled water without experience of the hydration. These results imply a considerably high energy barrier for the direct hydrate-to-ice transition. Water solidification, probably induced by dynamic nucleation, was also observed during melting.

SELECTION OF CITATIONS
SEARCH DETAIL
...