Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960371

ABSTRACT

Congenital zika virus syndrome (CZS) has become a significant worldwide concern since the sudden rise of microcephaly related to zika virus (ZIKV) in Brazil. Primarily transmitted by Aedes mosquitoes, ZIKV shares serologic similarities with dengue virus (DENV), complicating the diagnosis and/or clinical management. The Angiotensin I-Converting Enzyme (ACE) was associated with either neuroprotective or anti-inflammatory properties in the central nervous system (CNS). The possible role(s) of ACE in these two flaviviruses infection remain largely unexplored. In this study, we evaluate ACE activity in the brain of ZIKV- or DENV-infected mice, both compared to MOCK, showing about 30% increased ACE activity only in ZIKV-infected mice (p = 0.024), while no change was noticed in brain from DENV-infected animals (p = 0.888). In addition, the treatment with interferon beta (IFNß), under conditions previously demonstrated to rescue the normal size of microcephalic brains determined by ZIKV infection, also restored ACE activity in ZIKV-infected animals to levels close to that of the MOCK control group. Although inflammatory responses expected for either ZIKV or DENV infections, only ZIKV was associated with microcephaly, as well as with increased ACE activity and reversion by treatment with IFNß. Furthermore, this increase in ACE activity was observed only after intracerebroventricular (ICV) injection (F (2, 16) = 7.907, p = 0.004), but not for intraperitoneal (IP) administration of ZIKV (F (2, 26) = 1.996, p = 0.156), suggesting that the observed central ACE activity modulation may be associated with the presence of this specific flavivirus in the brain.

2.
Biochem Pharmacol ; 217: 115841, 2023 11.
Article in English | MEDLINE | ID: mdl-37820964

ABSTRACT

Ndel1 oligopeptidase activity shows promise as a potential biomarker for diagnosing schizophrenia (SCZ) and monitoring early-stage pharmacotherapy. Ndel1 plays a pivotal role in critical aspects of brain development, such as neurite outgrowth, neuronal migration, and embryonic brain formation, making it particularly relevant to neurodevelopmental disorders like SCZ. Currently, the most specific inhibitor for Ndel1 is the polyclonal anti-Ndel1 antibody (NOAb), known for its high specificity and efficient anti-catalytic activity. NOAb has been vital in measuring Ndel1 activity in humans and animal models, enabling the prediction of pharmacological responses to antipsychotics in studies with patients and animals. To advance our understanding of in vivo Ndel1 function and develop drugs for mental disorders, identifying small chemical compounds capable of specifically inhibiting Ndel1 oligopeptidase is crucial, including within living cells. Due to challenges in obtaining Ndel1's three-dimensional structure and its promiscuous substrate recognition, we conducted a high-throughput screening (HTS) of 2,400 small molecules. Nine compounds with IC50-values ranging from 7 to 56 µM were identified as potent Ndel1 inhibitors. Notably, one compound showed similar efficacy to NOAb and inhibited Ndel1 within living cells, although its in vivo use may pose toxicity concerns. Despite this, all identified compounds hold promise as candidates for further refinement through rational drug design, aiming to enhance their inhibitory efficacy, specificity, stability, and biodistribution. Our ultimate goal is to develop druggable Ndel1 inhibitors that can improve the treatment and support the diagnosis of psychiatric disorders like SCZ.


Subject(s)
Antibodies , Schizophrenia , Animals , Humans , Biomarkers , Carrier Proteins/immunology , Carrier Proteins/metabolism , High-Throughput Screening Assays , Schizophrenia/diagnosis , Schizophrenia/therapy , Tissue Distribution , Antibodies/pharmacology , Antibodies/therapeutic use
3.
Biomolecules ; 10(6)2020 06 25.
Article in English | MEDLINE | ID: mdl-32630529

ABSTRACT

The aggregation of α-synuclein (α-Syn) is a characteristic of Parkinson's disease (PD). α-Syn oligomerization/aggregation is accelerated by the serine peptidase, prolyl oligopeptidase (POP). Factors that affect POP conformation, including most of its inhibitors and an impairing mutation in its active site, influence the acceleration of α-Syn aggregation resulting from the interaction of these proteins. It is noteworthy, however, that α-Syn is not cleaved by POP. Prolyl endopeptidase-like (PREPL) protein is structurally related to the serine peptidases belonging to the POP family. Based on the α-Syn-POP studies and knowing that PREPL may contribute to the regulation of synaptic vesicle exocytosis, when this protein can encounter α-Syn, we investigated the α-Syn-PREPL interaction. The binding of these two human proteins was observed with an apparent affinity constant of about 5.7 µM and, as in the α-Syn assays with POP, the presence of PREPL accelerated the oligomerization/aggregation events, with no α-Syn cleavage. Furthermore, despite this lack of hydrolytic cleavage, the serine peptidase active site inhibitor phenylmethylsulfonyl fluoride (PMSF) abolished the enhancement of the α-Syn aggregation by PREPL. Therefore, given the attention to POP inhibitors as potential drugs to treat synucleinopathies, the present data point to PREPL as another potential target to be explored for this purpose.


Subject(s)
Phenylmethylsulfonyl Fluoride/pharmacology , Prolyl Oligopeptidases/antagonists & inhibitors , Protease Inhibitors/pharmacology , alpha-Synuclein/antagonists & inhibitors , Humans , Prolyl Oligopeptidases/chemistry , Prolyl Oligopeptidases/metabolism , Protein Aggregates/drug effects , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...