Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38860860

ABSTRACT

Biliary atresia (BA) is the leading indication for pediatric liver transplantation. Rhesus rotavirus (RRV) induced murine BA develops an obstructive cholangiopathy that mirrors the human disease. We have previously demonstrated the "SRL" motif on RRV's VP4 protein binds to heat shock cognate 70 protein (Hsc70) facilitating entry into cholangiocytes. In this study, we analyzed how binding to Hsc70 affects viral endocytosis, intracellular trafficking, and uniquely activates the signaling pathway that induces murine BA. Inhibition of clathrin- and dynamin-mediated endocytosis in cholangiocytes following infection demonstrated blocking dynamin decreased the infectivity of RRV whereas clathrin inhibition had no effect. Blocking early endosome trafficking resulted in decreased viral titers of RRV while late endosome inhibition had no effect. Following infection, TLR3 expression and p-NF-κB levels increased in cholangiocytes, leading to increased release of CXCL9 and CXCL10. Infected mice knocked out for TLR3 had decreased levels of CXCL9 and CXCL10, resulting in reduced NK cell numbers. Human BA patients experienced an increase in CXCL10 levels, suggesting this as a possible pathway leading to biliary obstruction. Viruses that utilize Hsc70 for cell entry exploit a clathrin-independent pathway and traffic to the early recycling endosome uniquely activating NF-κB through TLR3, leading to the release of CXCL9 and CXCL10, and inducing NK cell recruitment. These results define how the "SRL" peptide found on RRV's VP4 protein modulates viral trafficking, inducing the host response leading to bile duct obstruction.

2.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38076986

ABSTRACT

To be the most successful, primates must adapt to changing environments and optimize their behavior by making the most beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate a dissociable contribution of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.

3.
Bio Protoc ; 13(23): e4897, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38094257

ABSTRACT

Recent advancements in chemogenetic tools, such as designer receptors exclusively activated by designer drugs (DREADDs), allow the simultaneous manipulation of activity over a specific, broad brain region in nonhuman primates. However, the introduction of DREADDs into large and complexly shaped cortical sulcus regions of macaque monkeys is technically demanding; previously reported methods are time consuming or do not allow the spatial range of expression to be controlled. In the present report, we describe the procedure for an adeno-associated viral vector (AAV2.1) delivery via handheld injections into the dorsolateral prefrontal cortex (Brodmann's area 9/46) of macaque monkeys, with reference to pre-scanned anatomical magnetic resonance images. This procedure allows the precise delivery of DREADDs to a specific cortical region. Key features • This article describes the procedures for injecting viral vectors encoding functional proteins for chemogenetic manipulation into targeted cortical sulcus regions. • The protocol requires magnetic resonance imaging for the accurate estimation of the injection sites prior to surgery. • Viral vector solutions are injected using a handheld syringe under microscopic guidance. • This protocol allows for the precise introduction of designer receptors exclusively activated by designer drugs (DREADDs) to large and complex cortical regions.

4.
J Neurosci ; 43(39): 6619-6627, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37620158

ABSTRACT

Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system available for neuronal modulation in NHPs uses pharmacologically selective actuator modules (PSAMs), which are selectively activated by pharmacologically selective effector molecules (PSEMs). To facilitate the use of the PSAM/PSEM system, the selection and dosage of PSEMs should be validated and optimized for NHPs. To this end, we used a multimodal imaging approach. We virally expressed excitatory PSAM (PSAM4-5HT3) in the striatum and the primary motor cortex (M1) of two male macaque monkeys, and visualized its location through positron emission tomography (PET) with the reporter ligand [18F]ASEM. Chemogenetic excitability of neurons triggered by two PSEMs (uPSEM817 and uPSEM792) was evaluated using [18F]fluorodeoxyglucose-PET imaging, with uPSEM817 being more efficient than uPSEM792. Pharmacological magnetic resonance imaging (phMRI) showed that increased brain activity in the PSAM4-expressing region began ∼13 min after uPSEM817 administration and continued for at least 60 min. Our multimodal imaging data provide valuable information regarding the manipulation of neuronal activity using the PSAM/PSEM system in NHPs, facilitating future applications.SIGNIFICANCE STATEMENT Like other chemogenetic tools, the ion channel-based system called pharmacologically selective actuator module/pharmacologically selective effector molecule (PSAM/PSEM) allows remote manipulation of neuronal activity and behavior in living animals. Nevertheless, its application in nonhuman primates (NHPs) is still limited. Here, we used multitracer positron emission tomography (PET) imaging and pharmacological magnetic resonance imaging (phMRI) to visualize an excitatory chemogenetic ion channel (PSAM4-5HT3) and validate its chemometric function in macaque monkeys. Our results provide the optimal agonist, dose, and timing for chemogenetic neuronal manipulation, facilitating the use of the PSAM/PSEM system and expanding the flexibility and reliability of circuit manipulation in NHPs in a variety of situations.


Subject(s)
Ion Channels , Primates , Animals , Male , Reproducibility of Results , Multimodal Imaging , Macaca
5.
Nat Commun ; 14(1): 971, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854724

ABSTRACT

Epilepsy is a disorder in which abnormal neuronal hyperexcitation causes several types of seizures. Because pharmacological and surgical treatments occasionally interfere with normal brain function, a more focused and on-demand approach is desirable. Here we examined the efficacy of a chemogenetic tool-designer receptors exclusively activated by designer drugs (DREADDs)-for treating focal seizure in a nonhuman primate model. Acute infusion of the GABAA receptor antagonist bicuculline into the forelimb region of unilateral primary motor cortex caused paroxysmal discharges with twitching and stiffening of the contralateral arm, followed by recurrent cortical discharges with hemi- and whole-body clonic seizures in two male macaque monkeys. Expression of an inhibitory DREADD (hM4Di) throughout the seizure focus, and subsequent on-demand administration of a DREADD-selective agonist, rapidly suppressed the wide-spread seizures. These results demonstrate the efficacy of DREADDs for attenuating cortical seizure in a nonhuman primate model.


Subject(s)
Body Fluids , Seizures , Male , Animals , Brain , Bicuculline/pharmacology , GABA-A Receptor Antagonists , Macaca
6.
J Neurosci ; 42(32): 6267-6275, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35794012

ABSTRACT

The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.


Subject(s)
Caudate Nucleus , Motivation , Animals , Caudate Nucleus/physiology , Goals , Humans , Male , Prefrontal Cortex/physiology , Reward
7.
Reprod Biomed Online ; 44(4): 667-676, 2022 04.
Article in English | MEDLINE | ID: mdl-35279375

ABSTRACT

RESEARCH QUESTION: Are the revised patient selection criteria for fertility preservation of children and adolescents appropriate? DESIGN: A retrospective and prospective observational cohort study implemented at a university hospital approved for fertility preservation by an academic society. The characteristics of children and the process of fertility preservation consultation were investigated. Mortality, the longitudinal course of the endocrine profile and the menstrual cycle were confirmed in patients who underwent ovarian tissue cryopreservation (OTC) before the age of 18 years. RESULTS: Of the 74 children and adolescents referred for a fertility preservation consultation, 40 (54.1%) had haematological disease, which included patients with rare diseases. The mean age of patients was 11.1 ± 4.3 years (median 12 years, range 1-17 years). In accordance with the revised criteria, 31 (41.9%) patients had their ovarian tissue cryopreserved. Two out of 31 had complications after surgery (infection and drug allergy) and one patient with leukaemia (3.2%) had minimum residual disease on the extracted ovarian tissue. Of the 14 patients (>12 years) who completed treatment, 12 (85.7%) had primary ovarian insufficiency (POI) more than a year after treatment. Two out of 31 (6.5%) died because of recurrence of their underlying disease (median 28 months, range 0-60 months). Oocyte cryopreservation, as an additional and salvage fertility preservation treatment, was suggested to five patients with biochemical status POI (procedures pending). CONCLUSION: The primary disease and patients' ages varied in fertility preservation for children and adolescents. Our patient selection criteria might be appropriate over a short follow-up period.


Subject(s)
Fertility Preservation , Ovary , Adolescent , Child , Cryopreservation/methods , Female , Fertility Preservation/methods , Humans , Patient Selection , Prospective Studies , Retrospective Studies
8.
J Neurosci ; 42(12): 2552-2561, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35110390

ABSTRACT

The chemogenetic technology referred to as designer receptors exclusively activated by designer drugs (DREADDs) offers reversible means to control neuronal activity for investigating its functional correlation with behavioral action. Deschloroclozapine (DCZ), a recently developed highly potent and selective DREADD actuator, displays a capacity to expand the utility of DREADDs for chronic manipulation without side effects in nonhuman primates, which has not yet been validated. Here we investigated the pharmacokinetics and behavioral effects of orally administered DCZ in female and male macaque monkeys. Pharmacokinetic analysis and PET occupancy examination demonstrated that oral administration of DCZ yielded slower and prolonged kinetics, and that its bioavailability was 10%-20% of that in the case of systemic injection. Oral DCZ (300-1000 µg/kg) induced significant working memory impairments for at least 4 h in monkeys with hM4Di expressed in the dorsolateral prefrontal cortex (Brodmann's area 46). Repeated daily oral doses of DCZ consistently caused similar impairments over two weeks without discernible desensitization. Our results indicate that orally delivered DCZ affords a less invasive strategy for chronic but reversible chemogenetic manipulation of neuronal activity in nonhuman primates, and this has potential for clinical application.SIGNIFICANCE STATEMENT The use of designer receptors exclusively activated by designer drugs (DREADDs) for chronic manipulation of neuronal activity for days to weeks may be feasible for investigating brain functions and behavior on a long time-scale, and thereby for developing therapeutics for brain disorders, such as epilepsy. Here we performed pharmacokinetics and in vivo occupancy study of orally administered deschloroclozapine to determine a dose range suitable for DREADDs studies. In monkeys expressing hM4Di in the prefrontal cortex, single and repeated daily doses significantly induced working-memory impairments for hours and over two weeks, respectively, without discernible desensitization. These results indicate that orally delivered deschloroclozapine produces long-term stable chemogenetic effects, and holds great promise for the translational use of DREADDs technology.


Subject(s)
Clozapine , Designer Drugs , Animals , Behavior Control , Clozapine/pharmacology , Designer Drugs/pharmacology , Female , Macaca mulatta , Male , Neurons
9.
Front Endocrinol (Lausanne) ; 13: 1074603, 2022.
Article in English | MEDLINE | ID: mdl-36686445

ABSTRACT

Objective: To verify understanding and awareness of fertility preservation (FP) in pediatric patients undergoing FP treatments. Methods: A questionnaire survey was conducted before and after explanation of fertility issues and FP treatments for patients 6-17 years old who visited or were hospitalized for the purpose of ovarian tissue cryopreservation (OTC) or oocyte cryopreservation (OC), or sperm cryopreservation between October 2018 and April 2022. This study was approved by the institutional review board at St. Marianna University School of Medicine (No. 4123, UMIN000046125). Result: Participants in the study comprised 36 children (34 girls, 2 boys). Overall mean age was 13.3 ± 3.0 years. The underlying diseases were diverse, with leukemia in 14 patients (38.9%), brain tumor in 4 patients (11.1%). The questionnaire survey before the explanation showed that 19 patients (52.8%) wanted to have children in the future, but 15 (41.7%) were unsure of future wishes to raise children. And most children expressed some degree of understanding of the treatment being planned for the underlying disease (34, 94.4%). Similarly, most children understood that the treatment would affect their fertility (33, 91.7%). When asked if they would like to hear a story about how to become a mother or father after FP which including information of FP, half answered "Don't mind" (18, 50.0%). After being provided with information about FP treatment, all participants answered that they understood the adverse effects on fertility of treatments for the underlying disease. Regarding FP treatment, 32 children (88.9%) expressed understanding for FP and 26 (72.2%) wished to receive FP. "Fear" and "Pain" and "Costs" were frequently cited as concerns about FP. Following explanations, 33 children (91.7%) answered "Happy I heard the story" and no children answered, "Wish I hadn't heard the story". Finally, 28 of the 34 girls (82.4%) underwent OTC and one girl underwent OC. Discussion: The fact that all patients responded positively to the explanations of FP treatment is very informative. This is considered largely attributable to the patients themselves being involved in the decision-making process for FP. Conclusions: Explanations of FP for children appear valid if age-appropriate explanations are provided.


Subject(s)
Brain Neoplasms , Fertility Preservation , Male , Humans , Semen , Cryopreservation , Surveys and Questionnaires
10.
Elife ; 102021 07 30.
Article in English | MEDLINE | ID: mdl-34328413

ABSTRACT

The term 'temporal discounting' describes both choice preferences and motivation for delayed rewards. Here we show that neuronal activity in the dorsal part of the primate caudate head (dCDh) signals the temporally discounted value needed to compute the motivation for delayed rewards. Macaque monkeys performed an instrumental task, in which visual cues indicated the forthcoming size and delay duration before reward. Single dCDh neurons represented the temporally discounted value without reflecting changes in the animal's physiological state. Bilateral pharmacological or chemogenetic inactivation of dCDh markedly distorted the normal task performance based on the integration of reward size and delay, but did not affect the task performance for different reward sizes without delay. These results suggest that dCDh is involved in encoding the integrated multi-dimensional information critical for motivation.


Subject(s)
Behavior, Animal , Delay Discounting , Motivation , Neurons/physiology , Action Potentials/physiology , Animals , Choice Behavior/physiology , Cues , Macaca mulatta , Reward
11.
Sci Adv ; 7(26)2021 Jun.
Article in English | MEDLINE | ID: mdl-34162548

ABSTRACT

The primate prefrontal cortex (PFC) is situated at the core of higher brain functions via neural circuits such as those linking the caudate nucleus and mediodorsal thalamus. However, the distinctive roles of these prefronto-subcortical pathways remain elusive. Combining in vivo neuronal projection mapping with chemogenetic synaptic silencing, we reversibly dissected key pathways from dorsolateral part of the PFC (dlPFC) to the dorsal caudate (dCD) and lateral mediodorsal thalamus (MDl) individually in single monkeys. We found that silencing the bilateral dlPFC-MDl projections, but not the dlPFC-dCD projections, impaired performance in a spatial working memory task. Conversely, silencing the unilateral dlPFC-dCD projection, but not the unilateral dlPFC-MDl projection, altered preference in a decision-making task. These results revealed dissociable roles of the prefronto-subcortical pathways in working memory and decision-making, representing the technical advantage of imaging-guided pathway-selective chemogenetic manipulation for dissecting neural circuits underlying cognitive functions in primates.

12.
Pediatr Surg Int ; 37(8): 1021-1029, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33855613

ABSTRACT

PURPOSE: Fertility preservation (FP) for children is still challenging due to an information gap. In particular, there is little information about the surgical aspects of ovarian tissue cryopreservation (OTC) for children. In the present study, the appropriateness of preoperative management and the criteria of our cases were investigated with the aim of establishing a safe OTC procedure. METHODS: A total of 25 girls who underwent OTC from November 2015 through May 2020 were retrospectively analyzed with IRB approval. RESULTS: The median age of the patients was 13 (1-17) years. The medical indications were varied (e.g., leukemia, lymphoma, brain tumor), and included rare diseases. Seventeen cases (68%) underwent OTC during chemotherapy or radiotherapy, and 21 (84%) had comorbidities. All cases underwent ovarian tissue retrieval (OTR) with laparoscopy, and the median operating time was 64 (36-97) min, with little bleeding. Although two had complications, all patients started treatment on schedule. The median WBC and CRP increases a day after OTR were 0 (- 4400 to + 5200)/µl and 0.21 (- 0.2 to 0.87) mg/dl, respectively, with no complications. CONCLUSION: As long as the preoperative criteria are met, OTC could be possible even for children with a severe blood condition. In such cases, the degrees of the WBC and CRP elevations are useful to assess surgical infection.


Subject(s)
Cryopreservation/methods , Fertility Preservation/methods , Ovariectomy/methods , Adolescent , Child , Female , Fertility Preservation/adverse effects , Humans , Laparoscopy/methods , Retrospective Studies
13.
Nat Neurosci ; 23(9): 1157-1167, 2020 09.
Article in English | MEDLINE | ID: mdl-32632286

ABSTRACT

The chemogenetic technology designer receptors exclusively activated by designer drugs (DREADDs) afford remotely reversible control of cellular signaling, neuronal activity and behavior. Although the combination of muscarinic-based DREADDs with clozapine-N-oxide (CNO) has been widely used, sluggish kinetics, metabolic liabilities and potential off-target effects of CNO represent areas for improvement. Here, we provide a new high-affinity and selective agonist deschloroclozapine (DCZ) for muscarinic-based DREADDs. Positron emission tomography revealed that DCZ selectively bound to and occupied DREADDs in both mice and monkeys. Systemic delivery of low doses of DCZ (1 or 3 µg per kg) enhanced neuronal activity via hM3Dq within minutes in mice and monkeys. Intramuscular injections of DCZ (100 µg per kg) reversibly induced spatial working memory deficits in monkeys expressing hM4Di in the prefrontal cortex. DCZ represents a potent, selective, metabolically stable and fast-acting DREADD agonist with utility in both mice and nonhuman primates for a variety of applications.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Clozapine/analogs & derivatives , Designer Drugs/pharmacology , Neurons/drug effects , Animals , Clozapine/pharmacology , Genetic Techniques , Humans , Macaca fuscata , Macaca mulatta , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Receptor, Muscarinic M3/metabolism , Receptor, Muscarinic M4/metabolism
14.
J Neurosci ; 39(10): 1793-1804, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30626695

ABSTRACT

Processing incentive and drive is essential for control of goal-directed behavior. The limbic part of the basal ganglia has been emphasized in these processes, yet the exact neuronal mechanism has remained elusive. In this study, we examined the neuronal activity of the ventral pallidum (VP) and its upstream area, the rostromedial caudate (rmCD), while two male macaque monkeys performed an instrumental lever release task in which a visual cue indicated the forthcoming reward size. We found that the activity of some neurons in VP and rmCD reflected the expected reward size transiently following the cue. Reward size coding appeared earlier and stronger in VP than in rmCD. We also found that the activity in these areas was modulated by the satiation level of monkeys, which also occurred more frequently in VP than in rmCD. The information regarding reward size and satiation level was independently signaled in the neuronal populations of these areas. The data thus highlighted the neuronal coding of key variables for goal-directed behavior in VP. Furthermore, pharmacological inactivation of VP induced more severe deficit of goal-directed behavior than inactivation of rmCD, which was indicated by abnormal error repetition and diminished satiation effect on the performance. These results suggest that VP encodes incentive value and internal drive and plays a pivotal role in the control of motivation to promote goal-directed behavior.SIGNIFICANCE STATEMENT The limbic part of the basal ganglia has been implicated in the motivational control of goal-directed action. Here, we investigated how the ventral pallidum (VP) and the rostromedial caudate (rmCD) encode incentive value and internal drive and control goal-directed behavior. Neuronal recording and subsequent pharmacological inactivation revealed that VP had stronger coding of reward size and satiation level than rmCD. Reward size and satiation level were independently encoded in the neuronal population of these areas. Furthermore, VP inactivation impaired goal-directed behavior more severely than rmCD inactivation. These results highlight the central role of VP in the motivational control of goal-directed action.


Subject(s)
Basal Forebrain/physiology , Goals , Motivation/physiology , Neurons/physiology , Psychomotor Performance/physiology , Reward , Animals , Caudate Nucleus/physiology , Macaca mulatta , Male , Satiety Response , Visual Perception/physiology
15.
Neurosci Res ; 125: 54-59, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28733199

ABSTRACT

Multi-unit recording has been one of the most widely used techniques to investigate the correlation between multiple neuronal activities and behavior. However, a common problem of currently used multi-channel electrodes is their physical weakness. In this study, we developed a novel multi-channel electrode with sufficient physical strength to penetrate a thickened dura mater. This electrode consists of low-cost materials and is easily fabricated, and it enables recording without removing dura mater, thereby reducing the risk of inflammation, infection, or brain herniation. The low-cost multi-channel electrode developed in this study would be a useful tool for chronic recording in behaving animals.


Subject(s)
Action Potentials/physiology , Behavior, Animal/physiology , Brain/physiology , Electrodes , Animals , Electrophysiology/methods , Male , Neurons/physiology , Rats, Long-Evans
16.
Front Syst Neurosci ; 10: 99, 2016.
Article in English | MEDLINE | ID: mdl-28018186

ABSTRACT

Neural mechanisms of working memory, particularly its visuospatial aspect, have long been studied in non-human primates. On the other hand, rodents are becoming more important in systems neuroscience, as many of the innovative research methods have become available for them. There has been a question on whether primates and rodents have similar neural backgrounds for working memory. In this article, we carried out a comparative overview of the neural mechanisms of visuospatial working memory in monkeys and rats. In monkeys, a number of lesion studies indicate that the brain region most responsible for visuospatial working memory is the ventral dorsolateral prefrontal cortex (vDLPFC), as the performance in the standard tests for visuospatial working memory, such as delayed response and delayed alternation tasks, are impaired by lesions in this region. Single-unit studies revealed a characteristic firing pattern in neurons in this area, a sustained delay activity. Further studies indicated that the information maintained in the working memory, such as cue location and response direction in a delayed response, is coded in the sustained delay activity. In rats, an area comparable to the monkey vDLPFC was found to be the dorsal part of the medial prefrontal cortex (mPFC), as the delayed alternation in a T-maze is impaired by its lesion. Recently, the sustained delay activity similar to that found in monkeys has been found in the dorsal mPFC of rats performing the delayed response task. Furthermore, anatomical studies indicate that the vDLPFC in monkeys and the dorsal mPFC in rats have much in common, such as that they are both the major targets of parieto-frontal projections. Thus lines of evidence indicate that in both monkeys and rodents, the PFC plays a critical role in working memory.

17.
J Neurosci Methods ; 263: 68-74, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26868734

ABSTRACT

BACKGROUND: Head fixation has been one of the major methods in behavioral neurophysiology because it allows precision in stimulus application and behavioral assessment. Most neural recordings in awake monkeys have been obtained under head fixation, which is nowadays also being used in awake rodents. However, head fixation devices in rats often become unstable within several months, which increases risks for inflammation, infection, and necrosis of the bone and surrounding tissue. NEW METHOD: In this study we developed a novel non-invasive "neck collar system" for restraining the head and body movements of behaving rats. RESULTS: The attachment of the neck collar for 2-3 months did not affect the animals' health and welfare. Rats under neck-collar fixation could learn a behavioral task (standard delayed licking task) with the same efficiency as those under standard head fixation. They could also learn a more complicated task (delayed pro/anti-licking task) under neck-collar fixation and afterwards transfer their learning to the task under standard head fixation. Furthermore, we were able to record single-unit activity in rats under neck-collar fixation during the performance of the standard delayed licking task. COMPARISON WITH EXISTING METHOD(S): This system consists of economical materials and is easily constructed, and it enables head-restraint without surgery, thus eliminating the risk of inflammation or infection. CONCLUSIONS: We consider the neck-collar fixation developed in this study would be useful for restraining the head of a behaving rodent.


Subject(s)
Head Movements/physiology , Motor Activity/physiology , Neck/physiology , Neurons/physiology , Restraint, Physical/instrumentation , Action Potentials/physiology , Animals , Electrolytes/adverse effects , Learning , Male , Prefrontal Cortex/cytology , Rats , Rats, Long-Evans , Restraint, Physical/methods , Restraint, Physical/physiology , Wakefulness
18.
J Neurophysiol ; 114(5): 2600-15, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26378201

ABSTRACT

To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies.


Subject(s)
Conditioning, Classical/physiology , Neostriatum/physiology , Neurons/physiology , Reward , Acoustic Stimulation , Animals , Male , Probability , Rats , Rats, Wistar
19.
PLoS One ; 8(11): e80245, 2013.
Article in English | MEDLINE | ID: mdl-24244660

ABSTRACT

The glycoprotein (G) of rabies virus (RV) is required for binding to neuronal receptors and for viral entry. G-deleted RV vector is a powerful tool for investigating the organization and function of the neural circuits. It gives the investigator the ability to genetically target initial infection to particular neurons and to control trans-synaptic propagation. In this study we have quantitatively evaluated the effect of G gene deletion on the cytotoxicity and transgene expression level of the RV vector. We compared the characteristics of the propagation-competent RV vector (rHEP5.0-CVSG-mRFP) and the G-deleted RV vector (rHEP5.0-ΔG-mRFP), both of which are based on the attenuated HEP-Flury strain and express monomeric red fluorescent protein (mRFP) as a transgene. rHEP5.0-ΔG-mRFP showed lower cytotoxicity than rHEP5.0-CVSG-mRFP, and within 16 days of infection we found no change in the basic electrophysiological properties of neurons infected with the rHEP5.0-ΔG-mRFP. The mRFP expression level of rHEP5.0-ΔG-mRFP was much higher than that of rHEP5.0-CVSG-mRFP, and 3 days after infection the retrogradely infected neurons were clearly visualized by the expressed fluorescent protein without any staining. This may be due to the low cytotoxicity and/or the presumed change in the polymerase gene (L) expression level of the G-deleted RV vector. Although the mechanisms remains to be clarified, the results of this study indicate that deletion of the G gene greatly improves the usability of the RV vector for studying the organization and function of the neural circuits by decreasing the cytotoxicity and increasing the transgene expression level.


Subject(s)
Antigens, Viral/genetics , Glycoproteins/genetics , Luminescent Proteins/genetics , Rabies virus/genetics , Rabies virus/pathogenicity , Rabies/virology , Transgenes , Viral Envelope Proteins/genetics , Action Potentials , Animals , Cell Line , Gene Deletion , Gene Expression , Genetic Engineering , Genetic Vectors/chemistry , Glycoproteins/deficiency , Humans , Luminescent Proteins/metabolism , Neurons/pathology , Neurons/virology , Rabies virus/growth & development , Rats , Rats, Wistar , Viral Envelope Proteins/deficiency , Virulence , Virus Replication , Red Fluorescent Protein
20.
J Neurosci Methods ; 218(2): 139-47, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23769867

ABSTRACT

In order to make a direct link between the morphological and functional study of the nervous system, we established an experimental protocol for labeling individual neurons persistently without microscopic guidance by injecting a plasmid encoding fluorescent protein electroporatively after recording their activity extracellularly. Using a glass pipette filled with electrolyte solution containing a plasmid encoding green fluorescent protein (GFP), single-neuron recording and electroporation were performed on anesthetized rats. When performing the electroporation at the completion of recording, the degree of contact between the target neuron and the electrode tip was adjusted by monitoring the change of the trace of recorded action potentials and the increase of electrode resistance. The expression of GFP and its immunostaining with a polyclonal antibody enabled us to clearly see the basic structural components such as cell bodies, axons, dendrites, and even smaller components such as spines. Identification of the morphological subtypes of neurons was possible with every labeled neuron. The optimum condition for labeling was a 30% increase of the electrode resistance, and the labeling success rate evaluated 3 days after labeling was 40%. The rate evaluated one month after labeling was only slightly lower (33%). We also confirmed experimentally that this recording and labeling procedure can be similarly successful in head-fixed behaving rats. This new experimental protocol will be a breakthrough in systems neuroscience because it makes a direct link between the morphology and behavior-related activity of single neurons.


Subject(s)
Electroporation/methods , Neurons/cytology , Neurons/physiology , Patch-Clamp Techniques/methods , Animals , Green Fluorescent Proteins , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...