Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 254: 109994, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38750803

ABSTRACT

Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.


Subject(s)
Analgesics , Anthracenes , Carbamates , KCNQ Potassium Channels , Phenylenediamines , Animals , Male , Carbamates/pharmacology , Phenylenediamines/pharmacology , KCNQ Potassium Channels/antagonists & inhibitors , KCNQ Potassium Channels/drug effects , Anthracenes/pharmacology , Mice , Analgesics/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Neuralgia/drug therapy , Posterior Horn Cells/drug effects , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Myelinated/physiology , Spinal Cord Dorsal Horn/drug effects
2.
J Clin Med ; 13(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276114

ABSTRACT

The δ opioid receptor (DOR) inverse agonist has been demonstrated to improve learning and memory impairment in mice subjected to restraint stress. Here, we investigated the effects of SYK-623, a new DOR inverse agonist, on behavioral, immunohistochemical, and biochemical abnormalities in a mouse model of imipramine treatment-resistant depression. Male ddY mice received daily treatment of adrenocorticotropic hormone (ACTH) combined with chronic mild stress exposure (ACMS). SYK-623, imipramine, or the vehicle was administered once daily before ACMS. After three weeks, ACMS mice showed impaired learning and memory in the Y-maze test and increased immobility time in the forced swim test. SYK-623, but not imipramine, significantly suppressed behavioral abnormalities caused by ACMS. Based on the fluorescent immunohistochemical analysis of the hippocampus, ACMS induced a reduction in astrocytes and newborn neurons, similar to the reported findings observed in the postmortem brains of depressed patients. In addition, the number of parvalbumin-positive GABA neurons, which play a crucial role in neurogenesis, was reduced in the hippocampus, and western blot analysis showed decreased glutamic acid decarboxylase protein levels. These changes, except for the decrease in astrocytes, were suppressed by SYK-623. Thus, SYK-623 mitigates behavioral abnormalities and disturbed neurogenesis caused by chronic stress.

3.
J Neurochem ; 164(5): 658-670, 2023 03.
Article in English | MEDLINE | ID: mdl-36528843

ABSTRACT

Sulfatide is a sulfated glycosphingolipid that is present abundantly in myelin sheaths of the brain and spinal cord. It is synthesized by a cerebroside sulfotransferase encoded by Gal3st1, which catalyzes the transfer of sulfate from 3'-phosphoadenylylsulfate to galactosylceramide. We previously reported that Gal3st1 gene expression in the spinal cord is up-regulated 1 day after intraplantar injection of complete Freund's adjuvant (CFA), indicating that sulfatide is involved in inflammatory pain. In the present study, we found that intrathecal injection of sulfatide led to mechanical allodynia. Sulfatide caused levels of glial fibrillary acidic protein (GFAP) and nitric oxide in the spinal cord to increase. Mechanical allodynia induced by intrathecal injection of sulfatide was blocked by nitric oxide synthase inhibitors and by suppression of astrocyte activation by L-α-aminoadipate. These results suggest that sulfatide-induced mechanical allodynia involved glial activation and nitric oxide production. Blocking selectin, a sulfatide-binding protein, with bimosiamose attenuated sulfatide-induced allodynia and ameliorated CFA-induced mechanical allodynia during inflammatory pain. Finally, elevated levels of sulfatide concentration in the spinal cord were observed during CFA-induced inflammatory pain. The elevated sulfatide levels enhanced selectin activation in the spinal cord, resulting in mechanical allodynia. Our data suggest that sulfatide-selectin interaction plays a key role in inflammatory pain.


Subject(s)
Hyperalgesia , Sulfoglycosphingolipids , Humans , Hyperalgesia/metabolism , Nitric Oxide/metabolism , Pain/metabolism , Spinal Cord/metabolism , Inflammation/metabolism
4.
Pain ; 163(2): 334-349, 2022 02 01.
Article in English | MEDLINE | ID: mdl-33990107

ABSTRACT

ABSTRACT: Normalization of the excitatory and inhibitory balance by increasing the levels of endogenous inhibitory neurotransmitters by blocking their reuptake is a promising therapeutic strategy for relieving chronic pain. Pharmacological blockade of spinal γ-aminobutyric acid (GABA) transporter subtypes 1 and 3 (GAT1 and GAT3) has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we explored the synaptic mechanisms underlying their analgesic effects in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult mice, and the effects of GAT inhibitors on miniature and evoked postsynaptic currents were examined. Behaviorally, GAT inhibitors were intrathecally applied to assess their effects on mechanical hypersensitivity in mice developing neuropathic pain after partial sciatic nerve ligation. The GAT1 inhibitor NNC-711 reduced the frequency of miniature excitatory postsynaptic currents (EPSCs) and the amplitude of C-fiber-mediated EPSCs, and the GAT3 inhibitor SNAP-5114 reduced the amplitude of A-fiber-mediated and C-fiber-mediated EPSCs. These effects were antagonized by the GABAB receptor antagonist CGP55845. Consistently, the analgesic effect of intrathecally injected NNC-711 and SNAP-5114 in mice developing mechanical hypersensitivity after partial sciatic nerve ligation was abolished by CGP55845. Thus, GAT1 and GAT3 inhibitors exert distinct GABAB receptor-mediated inhibitory effects on excitatory synaptic transmission in the spinal dorsal horn, which most likely contributes to their analgesic effects.


Subject(s)
Posterior Horn Cells , Synaptic Transmission , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Excitatory Postsynaptic Potentials , Mice , gamma-Aminobutyric Acid/pharmacology
5.
J Pharmacol Sci ; 146(1): 33-39, 2021 May.
Article in English | MEDLINE | ID: mdl-33858653

ABSTRACT

Gabapentinoids such as gabapentin and pregabalin, which bind specifically to the α2δ subunit of voltage-gated Ca2+ channels, are used for first-line treatment of neuropathic pain. Here, we examined the analgesic effect of mirogabalin besilate (referred to simply as mirogabalin), a novel gabapentinoid, focusing on its action on the spinal cord and the descending noradrenergic pain inhibitory system. When administered systemically (10 and 30 mg/kg, intraperitoneally (i.p.)) and locally (10 and 30 µg, intracerebroventricularly (i.c.v.) or intrathecally (i.t.)) to mice, mirogabalin was found to exert analgesic effects on thermal (plantar test) and mechanical (von Frey test) hypersensitivity developing after partial sciatic nerve ligation. Notably, its analgesic effects (30 mg/kg, i.p. and 30 µg, i.c.v.) disappeared in mice pretreated with yohimbine hydrochloride (3 µg, i.t.). Moreover, in mice harboring a mutation in the α2δ-1 subunit resulting in substitution of arginine at position 217 with alanine to prevent gabapentinoid binding (R217A mutant mice), the analgesic effects of pregabalin and mirogabalin (30 µg, i.c.v., respectively) on mechanical hypersensitivity were almost completely suppressed. These results clearly demonstrate that mirogabalin also operates via the descending noradrenergic system, and that binding to the α2δ-1 subunit supraspinally is essential for the pain relief effect of gabapentinoids.


Subject(s)
Analgesics , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/pharmacology , Calcium Channels/metabolism , Neuralgia/drug therapy , Norepinephrine/metabolism , Animals , Bridged Bicyclo Compounds/metabolism , Calcium Channels/genetics , Drug Administration Routes , Female , Male , Mice , Mice, Inbred Strains , Mice, Mutant Strains , Mutation , Protein Binding/drug effects
6.
Behav Brain Res ; 383: 112506, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31982462

ABSTRACT

Gabapentinoids, which are the common analgesics, are also thought to be an effective treatment for anxiety disorder, which is one of several psychiatric disorders triggered and exacerbated by stress. The aim of the present study was to investigate whether mirogabalin, a recently launched gabapentinoid, protects multiple brain functions against repeated restraint stress. Adult male ddY mice were restrained for 7 days (repeated restraint stress: 2 h/day) or for 30 min (single restraint stress). Mirogabalin (intraperitoneal, intracerebroventricular or intrahippocampal injection) was administered prior to the restraint stress. Y-maze, elevated-plus maze and c-Fos immunohistochemistry were performed to evaluate learning function, anxiety levels and hippocampal neuronal activities, respectively, after the 7th day of the repeated restraint stress. Intestinal function was evaluated in terms of defecation, which was scored after the 5th day of repeated restraint stress and by the number of fecal pellets excreted after a single session of restraint stress. Repeated restraint stress induced memory dysfunction, anxiety-like behavior, an abnormal defecation score and increased hippocampal c-Fos expression. These changes were prevented by systemic administration of mirogabalin. Abnormal defecation was also induced by single restraint stress, and was inhibited by both systemic and central administration of mirogabalin, suggesting that the effect on the intestinal function was also mediated via the central nervous system. Enhancement of c-Fos expression by repeated stress was decreased by intrahippocampal injection of mirogabalin. Together, these observations suggest that mirogabalin protects multiple brain functions from repeated stress, which may be mediated by inhibition of hippocampal neuron hyperactivation.


Subject(s)
Behavior, Animal/drug effects , Bridged Bicyclo Compounds/pharmacology , Eliminative Behavior, Animal/drug effects , Hippocampus/drug effects , Neurons/drug effects , Restraint, Physical/psychology , Stress, Psychological/psychology , Animals , Anxiety/physiopathology , Anxiety/psychology , Brain/drug effects , Brain/metabolism , Elevated Plus Maze Test , Hippocampus/cytology , Memory/drug effects , Memory Disorders/physiopathology , Memory Disorders/psychology , Mice , Proto-Oncogene Proteins c-fos/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Stress, Psychological/physiopathology
7.
Neuroscience ; 428: 217-227, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31917338

ABSTRACT

Glycosphingolipids (GSLs) are abundant, ceramide-containing lipids in the nervous system that play key functional roles in pain and inflammation. We measured gene expression (Ugcg, St3gal5, St8sia1, B4galNT1, Ugt8a, and Gal3st1) of glycosyltransferases involved in GSL synthesis in murine dorsal root ganglion (DRG) and spinal cord after complete Freund's adjuvant (CFA)-induced unilateral hind-paw inflammation (1 day vs. 15 days). Chronic inflammation (15 days) sensitized both ipsilateral and contralateral paws to pain. One day of induced unilateral hind-paw inflammation (1d-IUHI) increased Ugcg, St8sia1, B4galnt1, and Gal3st1 expression in ipsilateral cord, suggesting that sulfatide and b-series gangliosides were also elevated. In addition, 1d-IUHI increased Ugcg, st3gal5 and Gal3st1 expression in contralateral cord, suggesting that sulfatide and a-/b-series gangliosides were elevated. By contrast, 1d-IUHI decreased Ugcg, St3gal5, and St8sia1 expression bilaterally in the DRG, suggesting that b-series gangliosides were depressed. Since intrathecal injection of b-series ganglioside induced mechanical allodynia in naïve mice, it seems reasonable that b-series gangliosides synthesized from upregulated St8sia1 in the ipsilateral spinal cord are involved in mechanical allodynia. By contrast, chronic inflammation led to a decrease of Ugcg, St3gal5, B4galnt1, and Gal3st1 expression in spinal cord bilaterally and an increase of St8sia1 expression in the ipsilateral DRG, suggesting that a-/b-series gangliosides in the spinal cord decreased and b-series gangliosides in ipsilateral DRG increased. These changes in glycosyltransferase gene expression in the DRG and the spinal cord may contribute to the modification of pain sensitivity in both inflamed and non-inflamed tissues and the transition from early to chronic inflammatory pain.


Subject(s)
Ganglia, Spinal/metabolism , Glycosphingolipids/metabolism , Glycosyltransferases/metabolism , Inflammation/metabolism , Spinal Cord/metabolism , Animals , Chronic Pain/physiopathology , Disease Models, Animal , Ganglia, Spinal/physiopathology , Glycosyltransferases/pharmacokinetics , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Inflammation/physiopathology , Male , Mice , Pain Measurement , Pain Threshold/physiology , Spinal Cord/physiopathology
8.
J Pharmacol Sci ; 133(3): 162-167, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28302446

ABSTRACT

To understand the synaptic and/or extrasynaptic mechanisms underlying pain relief by blockade of glycine transporter subtypes GlyT1 and GlyT2, whole-cell recordings were made from dorsal horn neurons in spinal slices from adult mice, and the effects of NFPS and ALX-1393, selective GlyT1 and GlyT2 inhibitors, respectively, on phasic evoked or miniature glycinergic inhibitory postsynaptic currents (eIPSCs or mIPSCs) were examined. NFPS and ALX-1393 prolonged the decay phase of eIPSCs without affecting their amplitude. In the presence of tetrodotoxin to record mIPSCs, NFPS and ALX-1393 induced a tonic inward current that was reversed by strychnine. Although NFPS had no statistically significant influences on mIPSCs, ALX-1393 significantly increased their frequency. We then further explored the role of GlyTs in the maintenance of glycinergic IPSCs. To facilitate vesicular release of glycine, repetitive high-frequency stimulation (HFS) was applied at 10 Hz for 3 min during continuous recordings of eIPSCs at 0.1 Hz. Prominent suppression of eIPSCs was evident after HFS in the presence of ALX-1393, but not NFPS. Thus, it appears that phasic and tonic inhibition may contribute to the analgesic effects of GlyT inhibitors. However, reduced glycinergic inhibition due to impaired vesicular refilling could hamper the analgesic efficacy of GlyT2 inhibitors.


Subject(s)
Glycine Plasma Membrane Transport Proteins/physiology , Posterior Horn Cells/physiology , Animals , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Inhibitory Postsynaptic Potentials/drug effects , Male , Mice , Posterior Horn Cells/drug effects , Sarcosine/analogs & derivatives , Sarcosine/pharmacology , Serine/analogs & derivatives , Serine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...