Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 11(8)2021 07 27.
Article in English | MEDLINE | ID: mdl-34439772

ABSTRACT

A prosthetic vascular graft that induces perigraft tissue incorporation may effectively prevent serious sequelae such as seroma formation and infection. Radiation-crosslinked gelatin hydrogel (RXgel) mimics the chemical and physical properties of the in vivo extracellular matrix and may facilitate wound healing by promoting tissue organization. Fibroblasts cultured on RXgel actively migrated into the gel for up to 7 days. RXgels of three different degrees of hardness (Rx[10], soft; Rx[15], middle; Rx[20], hard) were prepared, and small disc-like samples of RXgels were implanted into rats. In vitro and in vivo results indicated that Rx[10] was too soft to coat vascular grafts. Thus, expanded polytetrafluoroethylene (ePTFE) vascular grafts coated with RXgel were developed using Rx[15] and Rx[20] gels, and ring-shaped slices of the graft were implanted into rats. Alpha-smooth muscle actin (αSMA) and type III collagen (Col-III) levels were detected by immunohistochemistry. Immunohistochemical staining for αSMA and Col-III demonstrated that RXgel-coated vascular grafts induced more granulation tissue than non-coated grafts on days 14 and 28 after implantation. RXgel-coated ePTFE vascular grafts may provide a solution for patients by reducing poor perigraft tissue incorporation.


Subject(s)
Blood Vessel Prosthesis , Fibroblasts/metabolism , Gelatin/chemistry , Hydrogels/chemistry , Polytetrafluoroethylene/chemistry , Vascular Grafting/instrumentation , 3T3 Cells , Actins/metabolism , Animals , Cell Movement , Coated Materials, Biocompatible , Cross-Linking Reagents/chemistry , Hyperplasia , Immunohistochemistry , Male , Mice , Rats , Rats, Sprague-Dawley , Seroma/pathology
2.
Biomed Mater ; 16(4)2021 06 11.
Article in English | MEDLINE | ID: mdl-34030146

ABSTRACT

The elasticity, topography, and chemical composition of cell culture substrates influence cell behavior. However, the cellular responses toin vivoextracellular matrix (ECM), a hydrogel of proteins (mainly collagen) and polysaccharides, remain unknown as there is no substrate that preserves the key features of native ECM. This study introduces novel collagen hydrogels that can combine elasticity, topography, and composition and reproduce the correlation between collagen concentration (C) and elastic modulus (E) in native ECM. A simple reagent-free method based on radiation-cross-linking altered ECM-derived collagen I and hydrolyzed collagen (gelatin or collagen peptide) solutions into hydrogels with tunable elastic moduli covering a broad range of soft tissues (E= 1-236 kPa) originating from the final collagen density in the hydrogels (C= 0.3%-14%) and precise microtopographies (⩾1 µm). The amino acid composition ratio was almost unchanged by this method, and the obtained collagen hydrogels maintained enzyme-mediated degradability. These collagen hydrogels enabled investigation of the responses of cell lines (fibroblasts, epithelial cells, and myoblasts) and primary cells (rat cardiomyocytes) to soft topographic cues such as thosein vivounder the positive correlation betweenCandE. These cells adhered directly to the collagen hydrogels and chose to stay atop or spontaneously migrate into them depending onE, that is, the density of the collagen network,C. We revealed that the cell morphology and actin cytoskeleton organization conformed to the topographic cues, even when they are as soft asin vivoECM. The stiffer microgrooves on collagen hydrogels aligned cells more effectively, except HeLa cells that underwent drastic changes in cell morphology. These collagen hydrogels may not only reducein vivoandin vitrocell behavioral disparity but also facilitate artificial ECM design to control cell function and fate for applications in tissue engineering and regenerative medicine.


Subject(s)
Biocompatible Materials , Cell Physiological Phenomena/drug effects , Collagen , Elasticity/drug effects , Hydrogels , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cells, Cultured , Collagen/chemistry , Collagen/pharmacology , Dogs , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , HeLa Cells , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Madin Darby Canine Kidney Cells , Rats , Surface Properties
3.
J Gen Physiol ; 152(8)2020 08 03.
Article in English | MEDLINE | ID: mdl-32421782

ABSTRACT

Recent studies using intracellular thermometers have shown that the temperature inside cultured single cells varies heterogeneously on the order of 1°C. However, the reliability of intracellular thermometry has been challenged both experimentally and theoretically because it is, in principle, exceedingly difficult to exclude the effects of nonthermal factors on the thermometers. To accurately measure cellular temperatures from outside of cells, we developed novel thermometry with fluorescent thermometer nanosheets, allowing for noninvasive global temperature mapping of cultured single cells. Various types of cells, i.e., HeLa/HEK293 cells, brown adipocytes, cardiomyocytes, and neurons, were cultured on nanosheets containing the temperature-sensitive fluorescent dye europium (III) thenoyltrifluoroacetonate trihydrate. First, we found that the difference in temperature on the nanosheet between nonexcitable HeLa/HEK293 cells and the culture medium was less than 0.2°C. The expression of mutated type 1 ryanodine receptors (R164C or Y523S) in HEK293 cells that cause Ca2+ leak from the endoplasmic reticulum did not change the cellular temperature greater than 0.1°C. Yet intracellular thermometry detected an increase in temperature of greater than ∼2°C at the endoplasmic reticulum in HeLa cells upon ionomycin-induced intracellular Ca2+ burst; global cellular temperature remained nearly constant within ±0.2°C. When rat neonatal cardiomyocytes or brown adipocytes were stimulated by a mitochondrial uncoupling reagent, the temperature was nearly unchanged within ±0.1°C. In cardiomyocytes, the temperature was stable within ±0.01°C during contractions when electrically stimulated at 2 Hz. Similarly, when rat hippocampal neurons were electrically stimulated at 0.25 Hz, the temperature was stable within ±0.03°C. The present findings with nonexcitable and excitable cells demonstrate that heat produced upon activation in single cells does not uniformly increase cellular temperature on a global basis, but merely forms a local temperature gradient on the order of ∼1°C just proximal to a heat source, such as the endoplasmic/sarcoplasmic reticulum ATPase.


Subject(s)
Nanotechnology , Single-Cell Analysis , Thermography , Thermometers , Adipocytes , Animals , Calcium/metabolism , HEK293 Cells , HeLa Cells , Humans , Myocytes, Cardiac , Neurons , Rats , Reproducibility of Results , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...