Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 98(6): 1253-9, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17060364

ABSTRACT

BACKGROUND AND AIMS: Among the subspecies of Petunia axillaris are various lines emitting sensorially different scents. Analysis of variations in floral scent among genetically close individuals is a powerful approach to understanding the mechanisms for generating scent diversity. METHODS: Emitted and endogenous components were analysed independently to gain information about evaporation and endogenous production in 13 wild lines of P. axillaris. A dynamic headspace method was used to collect emitted components. Endogenous components were extracted with solvent. Both of these sample types were subjected to quantitative and qualitative analysis by gas chromatography (GC)-flame ionization detector (FID) and GC-mass spectrometry (MS). KEY RESULTS AND CONCLUSIONS: Whereas the profiles of emitted compounds showed qualitative homogeneity, being mainly composed of methyl benzoate with quantitative variation, the profiles of endogenous compounds showed both qualitative and quantitative variation. A negative correlation was found between the evaporation ratio and boiling point of each compound examined. Lower boiling point compounds were strongly represented in the emitted component, resulting in the reduction of qualitative variation in floral scent. In conclusion, floral scent diversity results from variation in both the endogenous production and the evaporation rate of the individual volatile compounds.


Subject(s)
Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Odorants , Petunia/genetics , Flowers/genetics , Hydrocarbons, Aromatic/chemistry , Hydrocarbons, Aromatic/metabolism
2.
Plant Physiol ; 126(3): 965-72, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11457947

ABSTRACT

We investigated the effect of overexpressing a pumpkin gibberellin (GA) 20-oxidase gene encoding an enzyme that forms predominantly biologically inactive products on GA biosynthesis and plant morphology in transgenic lettuce (Lactuca sativa cv Vanguard) plants. Lettuce was transformed with the pumpkin GA 20-oxidase gene downstream of a strong constitutive promoter cassette (El2-35S-Omega). The transgenic plants in which the pumpkin gene was detected by polymerase chain reaction were dwarfed in the T(2) generation, whereas transformants with a normal growth phenotype did not contain the transgene. The result of Southern-blot analysis showed that the transgene was integrated as a single copy; the plants segregated three dwarfs to one normal in the T(2) generation, indicating that the transgene was stable and dominant. The endogenous levels of GA(1) and GA(4) were reduced in the dwarfs, whereas large amounts of GA(17) and GA(25), which are inactive products of the pumpkin GA 20-oxidase, accumulated in these lines. These results indicate that a functional pumpkin GA 20-oxidase is expressed in the transgenic lettuce, resulting in a diversion of the normal pathway of GA biosynthesis to inactive products. Furthermore, this technique may be useful for controlling plant stature in other agricultural and horticultural species.


Subject(s)
Cucurbitaceae/enzymology , Lactuca/growth & development , Mixed Function Oxygenases/physiology , Cucurbitaceae/genetics , Gibberellins/biosynthesis , Lactuca/drug effects , Lactuca/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Plant Growth Regulators/biosynthesis , Plant Growth Regulators/pharmacology , Plants, Genetically Modified , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...