Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biol Res ; 57(1): 14, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570874

ABSTRACT

Galectins are soluble glycan-binding proteins that interact with a wide range of glycoproteins and glycolipids and modulate a broad spectrum of physiological and pathological processes. The expression and subcellular localization of different galectins vary among tissues and cell types and change during processes of tissue repair, fibrosis and cancer where epithelial cells loss differentiation while acquiring migratory mesenchymal phenotypes. The epithelial-mesenchymal transition (EMT) that occurs in the context of these processes can include modifications of glycosylation patterns of glycolipids and glycoproteins affecting their interactions with galectins. Moreover, overexpression of certain galectins has been involved in the development and different outcomes of EMT. This review focuses on the roles and mechanisms of Galectin-1 (Gal-1), Gal-3, Gal-4, Gal-7 and Gal-8, which have been involved in physiologic and pathogenic EMT contexts.


Subject(s)
Galectins , Neoplasms , Humans , Galectins/genetics , Galectins/metabolism , Fibrosis , Glycoproteins , Epithelial-Mesenchymal Transition , Glycolipids
2.
Traffic ; 22(10): 345-361, 2021 10.
Article in English | MEDLINE | ID: mdl-34431177

ABSTRACT

Ligand-independent epidermal growth factor receptor (EGFR) endocytosis is inducible by a variety of stress conditions converging upon p38 kinase. A less known pathway involves phosphatidic acid (PA) signaling toward the activation of type 4 phosphodiesterases (PDE4) that decrease cAMP levels and protein kinase A (PKA) activity. This PA/PDE4/PKA pathway is triggered with propranolol used to inhibit PA hydrolysis and induces clathrin-dependent and clathrin-independent endocytosis, followed by reversible accumulation of EGFR in recycling endosomes. Here we give further evidence of this signaling pathway using biosensors of PA, cAMP, and PKA in live cells and then show that it activates p38 and ERK1/2 downstream the PKA inhibition. Clathrin-silencing and IN/SUR experiments involved the activity of p38 in the clathrin-dependent route, while ERK1/2 mediates clathrin-independent EGFR endocytosis. The PA/PDE4/PKA pathway selectively increases the EGFR endocytic rate without affecting LDLR and TfR constitute endocytosis. This selectiveness is probably because of EGFR phosphorylation, as detected in Th1046/1047 and Ser669 residues. The EGFR accumulates at perinuclear recycling endosomes colocalizing with TfR, fluorescent transferrin, and Rab11, while a small proportion distributes to Alix-endosomes. A non-selective recycling arrest includes LDLR and TfR in a reversible manner. The PA/PDE4/PKA pathway involving both p38 and ERK1/2 expands the possibilities of EGFR transmodulation and interference in cancer.


Subject(s)
MAP Kinase Signaling System , Phosphatidic Acids , Clathrin/metabolism , Endocytosis/physiology , ErbB Receptors/metabolism , Ligands , Phosphatidic Acids/metabolism , Phosphorylation , Signal Transduction
3.
Cancers (Basel) ; 13(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34298835

ABSTRACT

Cancer therapy may be improved by the simultaneous interference of two or more oncogenic pathways contributing to tumor progression and aggressiveness, such as EGFR and p53. Tumor cells expressing gain-of-function (GOF) mutants of p53 (mutp53) are usually resistant to EGFR inhibitors and display invasive migration and AKT-mediated survival associated with enhanced EGFR recycling. D-Propranolol (D-Prop), the non-beta blocker enantiomer of propranolol, was previously shown to induce EGFR internalization through a PKA inhibitory pathway that blocks the recycling of the receptor. Here, we first show that D-Prop decreases the levels of EGFR at the surface of GOF mutp53 cells, relocating the receptor towards recycling endosomes, both in the absence of ligand and during stimulation with high concentrations of EGF or TGF-α. D-Prop also inactivates AKT signaling and reduces the invasive migration and viability of these mutp53 cells. Unexpectedly, mutp53 protein, which is stabilized by interaction with the chaperone HSP90 and mediates cell oncogenic addiction, becomes destabilized after D-Prop treatment. HSP90 phosphorylation by PKA and its interaction with mutp53 are decreased by D-Prop, releasing mutp53 towards proteasomal degradation. Furthermore, a single daily dose of D-Prop reproduces most of these effects in xenografts of aggressive gallbladder cancerous G-415 cells expressing GOF R282W mutp53, resulting in reduced tumor growth and extended mice survival. D-Prop then emerges as an old drug endowed with a novel therapeutic potential against EGFR- and mutp53-driven tumor traits that are common to a large variety of cancers.

4.
J Periodontal Res ; 55(5): 724-733, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32449990

ABSTRACT

BACKGROUND AND OBJECTIVE: During cyclosporine-induced gingival overgrowth, the homeostatic balance of gingival connective tissue is disrupted leading to fibrosis. Galectins are glycan-binding proteins that can modulate a variety of cellular processes including fibrosis in several organs. Here, we study the role of galectin-8 (Gal-8) in the response of gingival connective tissue cells to cyclosporine. METHODS: We used human gingival fibroblasts and mouse NIH3T3 cells treated with recombinant Gal-8 and/or cyclosporine for analyzing specific mRNA and protein levels through immunoblot, real-time polymerase chain reaction, ELISA and immunofluorescence, pull-down with Gal-8-Sepharose for Gal-8-to-cell surface glycoprotein interactions, short hairpin RNA for Gal-8 silencing and Student's t test and ANOVA for statistical analysis. RESULTS: Galectin-8 stimulated type I collagen and fibronectin protein levels and potentiated CTGF protein levels in TGF-ß1-stimulated human gingival fibroblasts. Gal-8 interacted with α5ß1-integrin and type II TGF-ß receptor. Gal-8 stimulated fibronectin protein and mRNA levels, and this response was dependent on FAK activity but not Smad2/3 signaling. Cyclosporine and tumor necrosis factor alpha (TNF-α) increased Gal-8 protein levels. Finally, silencing of galectin-8 in NIH3T3 cells abolished cyclosporine-induced fibronectin protein levels. CONCLUSION: Taken together, these results reveal for the first time Gal-8 as a fibrogenic stimulus exerted through ß1-integrin/FAK pathways in human gingival fibroblasts, which can be triggered by cyclosporine. Further studies should explore the involvement of Gal-8 in human gingival tissues and its role in drug-induced gingival overgrowth.


Subject(s)
Cyclosporine , Gingival Overgrowth , Animals , Cells, Cultured , Cyclosporine/toxicity , Fibroblasts , Galectins , Gingiva , Gingival Overgrowth/chemically induced , Humans , Mice , NIH 3T3 Cells
5.
Mol Neurobiol ; 56(11): 7774-7788, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31119556

ABSTRACT

Galectin-8 (Gal-8) is a glycan-binding protein that modulates a variety of cellular processes interacting with cell surface glycoproteins. Neutralizing anti-Gal-8 antibodies that block Gal-8 functions have been described in autoimmune and inflammatory disorders, likely playing pathogenic roles. In the brain, Gal-8 is highly expressed in the choroid plexus and accordingly has been detected in human cerebrospinal fluid. It protects against central nervous system autoimmune damage through its immune-suppressive potential. Whether Gal-8 plays a direct role upon neurons remains unknown. Here, we show that Gal-8 protects hippocampal neurons in primary culture against damaging conditions such as nutrient deprivation, glutamate-induced excitotoxicity, hydrogen peroxide (H2O2)-induced oxidative stress, and ß-amyloid oligomers (Aßo). This protective action is manifested even after 2 h of exposure to the harmful condition. Pull-down assays demonstrate binding of Gal-8 to selected ß1-integrins, including α3 and α5ß1. Furthermore, Gal-8 activates ß1-integrins, ERK1/2, and PI3K/AKT signaling pathways that mediate neuroprotection. Hippocampal neurons in primary culture produce and secrete Gal-8, and their survival decreases upon incubation with human function-blocking Gal-8 autoantibodies obtained from lupus patients. Despite the low levels of Gal-8 expression detected by real-time PCR in hippocampus, compared with other brain regions, the complete lack of Gal-8 in Gal-8 KO mice determines higher levels of apoptosis upon H2O2 stereotaxic injection in this region. Therefore, endogenous Gal-8 likely contributes to generate a neuroprotective environment in the brain, which might be eventually counteracted by human function-blocking autoantibodies.


Subject(s)
Antibodies, Neutralizing/pharmacology , Autoantibodies/pharmacology , Brain/metabolism , Galectins/metabolism , Neuroprotection , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Hippocampus/pathology , Humans , Hydrogen Peroxide/metabolism , Integrin beta1/metabolism , Neurons/drug effects , Neurons/pathology , Neuroprotection/drug effects , Protein Binding/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects
6.
Carcinogenesis ; 40(2): 313-323, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30624618

ABSTRACT

The permeability of endothelial cells is regulated by the stability of the adherens junctions, which is highly sensitive to kinase-mediated phosphorylation and endothelial nitric oxide synthase (eNOS)-mediated S-nitrosylation of its protein components. Solid tumors can produce a variety of factors that stimulate these signaling pathways leading to endothelial cell hyperpermeability. This generates stromal conditions that facilitate tumoral growth and dissemination. Galectin-8 (Gal-8) is overexpressed in several carcinomas and has a variety of cellular effects that can contribute to tumor pathogenicity, including angiogenesis. Here we explored whether Gal-8 has also a role in endothelial permeability. We show that recombinant Gal-8 activates eNOS, induces S-nitrosylation of p120-catenin (p120) and dissociation of adherens junction, leading to hyperpermeability of the human endothelial cell line EAhy926. This pathway involves focal-adhesion kinase (FAK) activation downstream of eNOS as a requirement for eNOS-mediated p120 S-nitrosylation. This suggests a reciprocal, yet little understood, regulation of phosphorylation and S-nitrosylation events acting upon adherens junction permeability. In addition, glutathione S-transferase (GST)-Gal-8 pull-down experiments and function-blocking ß1-integrin antibodies point to ß1-integrins as cell surface components involved in Gal-8-induced hyperpermeability. Endogenous Gal-8 secreted from the breast cancer cell line MCF-7 has similar hyperpermeability and signaling effects. Furthermore, the mouse cremaster model system showed that Gal-8 also activates eNOS, induces S-nitrosylation of adherens junction components and is an effective hyperpermeability agent in vivo. These results add endothelial permeability regulation by S-nitrosylation as a new function of Gal-8 that can potentially contribute to the pathogenicity of tumors overexpressing this lectin.


Subject(s)
Adherens Junctions/metabolism , Galectins/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/physiology , Animals , Cell Line, Tumor , Endothelial Cells/metabolism , Focal Adhesion Kinase 1/metabolism , Glutathione Transferase , Humans , MCF-7 Cells , Male , Mice , Phosphorylation/physiology
7.
Cell Rep ; 25(11): 3110-3122.e6, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30540943

ABSTRACT

Complete activation of B cells relies on their capacity to extract tethered antigens from immune synapses by either exerting mechanical forces or promoting their proteolytic degradation through lysosome secretion. Whether antigen extraction can also be tuned by local cues originating from the lymphoid microenvironment has not been investigated. We here show that the expression of Galectin-8-a glycan-binding protein found in the extracellular milieu, which regulates interactions between cells and matrix proteins-is increased within lymph nodes under inflammatory conditions where it enhances B cell arrest phases upon antigen recognition in vivo and promotes synapse formation during BCR recognition of immobilized antigens. Galectin-8 triggers a faster recruitment and secretion of lysosomes toward the B cell-antigen contact site, resulting in efficient extraction of immobilized antigens through a proteolytic mechanism. Thus, extracellular cues can determine how B cells sense and extract tethered antigens and thereby tune B cell responses in vivo.


Subject(s)
Antigen Presentation/immunology , Antigens, Surface/metabolism , B-Lymphocytes/immunology , Galectins/metabolism , Immunological Synapses/metabolism , Animals , B-Lymphocytes/cytology , Cell Cycle Checkpoints , Cell Line , Chickens , Lymph Nodes/metabolism , Lysosomes/metabolism , Mice, Inbred C57BL , Protein Binding , Proteolysis , Rats , Receptors, Antigen, B-Cell/metabolism , T-Lymphocytes/cytology
8.
Mol Biol Cell ; 29(5): 557-574, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29298841

ABSTRACT

Epithelial cells can acquire invasive and tumorigenic capabilities through epithelial-mesenchymal-transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective ß1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin-Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by α5ß1integrin binding. Under subconfluent conditions, Gal-8-overexpressing MDCK cells (MDCK-Gal-8H) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased ß-catenin activity. Changes related to migration/invasion included higher expression of α5ß1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8-stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and ß1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8H cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties.


Subject(s)
Epithelial-Mesenchymal Transition , ErbB Receptors/metabolism , Galectins/metabolism , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Animals , Cadherins/metabolism , Carcinogenesis , Dogs , Focal Adhesion Kinase 1/metabolism , Humans , Integrin beta1/metabolism , Madin Darby Canine Kidney Cells , Male , Mice , Neoplasms, Experimental , Recombinant Proteins/metabolism , Transfection , Up-Regulation , Urokinase-Type Plasminogen Activator/metabolism
9.
PLoS One ; 12(6): e0177472, 2017.
Article in English | MEDLINE | ID: mdl-28650992

ABSTRACT

Galectin-8 (Gal-8) is a member of a glycan-binding protein family that regulates the immune system, among other functions, and is a target of antibodies in autoimmune disorders. However, its role in multiple sclerosis (MS), an autoimmune inflammatory disease of the central nervous system (CNS), remains unknown. We study the consequences of Gal-8 silencing on lymphocyte subpopulations and the development of experimental autoimmune encephalitis (EAE), to then assess the presence and clinical meaning of anti-Gal-8 antibodies in MS patients. Lgals8/Lac-Z knock-in mice lacking Gal-8 expression have higher polarization toward Th17 cells accompanied with decreased CCR6+ and higher CXCR3+ regulatory T cells (Tregs) frequency. These conditions result in exacerbated MOG35-55 peptide-induced EAE. Gal-8 eliminates activated Th17 but not Th1 cells by apoptosis and ameliorates EAE in C57BL/6 wild-type mice. ß-gal histochemistry reflecting the activity of the Gal-8 promoter revealed Gal-8 expression in a wide range of CNS regions, including high expression in the choroid-plexus. Accordingly, we detected Gal-8 in human cerebrospinal fluid, suggesting a role in the CNS immune-surveillance circuit. In addition, we show that MS patients generate function-blocking anti-Gal-8 antibodies with pathogenic potential. Such antibodies block cell adhesion and Gal-8-induced Th17 apoptosis. Furthermore, circulating anti-Gal-8 antibodies associate with relapsing-remitting MS (RRMS), and not with progressive MS phenotypes, predicting clinical disability at diagnosis within the first year of follow-up. Our results reveal that Gal-8 has an immunosuppressive protective role against autoimmune CNS inflammation, modulating the balance of Th17 and Th1 polarization and their respective Tregs. Such a role can be counteracted during RRMS by anti-Gal-8 antibodies, worsening disease prognosis. Even though anti-Gal-8 antibodies are not specific for MS, our results suggest that they could be a potential early severity biomarker in RRMS.


Subject(s)
Autoantibodies/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Galectins/immunology , Multiple Sclerosis/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Apoptosis/physiology , Brain/immunology , Brain/metabolism , Cell Adhesion/physiology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Galectins/genetics , Galectins/metabolism , Gene Silencing , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Prognosis , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism
10.
Oncotarget ; 8(14): 23073-23086, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28160570

ABSTRACT

The interaction between acute myeloid leukemia cells (AML) with the bone marrow stroma cells (BMSCs) determines a protective environment that favors tumor development and resistance to conventional chemotherapy. We showed that BMSCs secrete soluble factors that protect AML cells from Ara-C induced cytotoxicity. This leukemia chemoresistance is associated with a decrease in the equilibrative nucleoside transporter (ENT1) activity by inducing removal of ENT1 from the cell surface. Reduction of cell proliferation was also observed with activation of AKT and mTOR-dependent cell survival pathways, which may also contribute to the tumor chemoprotection. Analysis of primary BMSC cultures has demonstrated that AML patients with stroma capable to confer Ara-C resistance in vitro compared to AML patients without this stroma capacity were associated with a worse prognosis. The two year overall survival rate was 0% versus 80% respectively (p=0.0001). This is the first report of a chemoprotection mechanism based on the removal of a drug transporter from the cell surface and most importantly the first time that a stroma phenotype has correlated with prognostic outcome in cancer.


Subject(s)
Bone Marrow/metabolism , Cytarabine/pharmacology , Equilibrative Nucleoside Transporter 1/metabolism , Leukemia, Myeloid, Acute/drug therapy , Bone Marrow Cells/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Patient Outcome Assessment , Stromal Cells/pathology
11.
Biol Res ; 49(1): 33, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27459991

ABSTRACT

BACKGROUND: Glioblastoma is one of the most aggressive cancers of the brain. Malignant traits of glioblastoma cells include elevated migration, proliferation and survival capabilities. Galectins are unconventionally secreted glycan-binding proteins that modulate processes of cell adhesion, migration, proliferation and apoptosis by interacting with beta-galactosides of cell surface glycoproteins and the extracellular matrix. Galectin-8 is one of the galectins highly expressed in glioblastoma cells. It has a unique selectivity for terminally sialylated glycans recently found enhanced in these highly malignant cells. A previous study in glioblastoma cell lines reported that Gal-8 coating a plastic surface stimulates two-dimensional motility. Because in other cells Gal-8 arrests proliferation and induces apoptosis, here we extend its study by analyzing all of these processes in a U87 glioblastoma cell model. METHODS: We used immunoblot and RT-PCR for Gal-8 expression analysis, recombinant Gal-8 produced in a bacteria system for Gal-8 treatment of the cells, and shRNA in lentivirus transduction for Gal-8 silencing. Cell migration as assessed in transwell filters. Cell proliferation, cell cycle and apoptosis were analyzed by FACS. RESULTS: Gal-8 as a soluble stimulus triggered chemotactic migration of U87 cells across the polycarbonate filter of transwell chambers, almost as intensively as fetal bovine serum. Unexpectedly, Gal-8 also enhanced U87 cell growth. Co-incubation of Gal-8 with lactose, which blocks galectin-glycan interactions, abrogated both effects. Immunoblot showed Gal-8 in conditioned media reflecting its secretion. U87 cells transduced with silencing shRNA in a lentiviral vector expressed and secreted 30-40 % of their normal Gal-8 levels. These cells maintained their migratory capabilities, but decreased their proliferation rate and underwent higher levels of apoptosis, as revealed by flow cytometry analysis of cell cycle, CFSE and activated caspase-3 staining. Proliferation seemed to be more sensitive than migration to Gal-8 expression levels. CONCLUSIONS: Gal-8, either secreted or exogenously enriched in the media, and acting through extracellular glycan interactions, constitutes a strong stimulus of directional migration in glioblastoma U87 cells and for the first time emerges as a factor that promotes proliferation and prevents apoptosis in cancerous cells. These properties could potentially contribute to the exaggerated malignancy of glioblastoma cells.


Subject(s)
Brain Neoplasms/pathology , Galectins/physiology , Glioblastoma/pathology , Animals , Apoptosis/physiology , Brain Neoplasms/genetics , Cattle , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Flow Cytometry/methods , Galectin 1/analysis , Galectin 1/physiology , Galectin 3/analysis , Galectin 3/physiology , Galectins/analysis , Galectins/pharmacology , Glioblastoma/genetics , Humans , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Tumor Cells, Cultured
12.
Biol. Res ; 49: 1-10, 2016. ilus, graf
Article in English | LILACS | ID: biblio-950860

ABSTRACT

BACKGROUND: Glioblastoma is one of the most aggressive cancers of the brain. Malignant traits of glioblastoma cells include elevated migration, proliferation and survival capabilities. Galectins are unconventionally secreted glycan-binding proteins that modulate processes of cell adhesion, migration, proliferation and apoptosis by interacting with beta-galactosides of cell surface glycoproteins and the extracellular matrix. Galectin-8 is one of the galectins highly expressed in glioblastoma cells. It has a unique selectivity for terminally sialylated glycans recently found enhanced in these highly malignant cells. A previous study in glioblastoma cell lines reported that Gal-8 coating a plastic surface stimulates two-dimensional motility. Because in other cells Gal-8 arrests proliferation and induces apoptosis, here we extend its study by analyzing all of these processes in a U87 glioblastoma cell mode.l METHODS: We used immunoblot and RT-PCR for Gal-8 expression analysis, recombinant Gal-8 produced in a bacteria system for Gal-8 treatment of the cells, and shRNA in lentivirus transduction for Gal-8 silencing. Cell migration as assessed in transwell filters. Cell proliferation, cell cycle and apoptosis were analyzed by FACS. RESULTS: Gal-8 as a soluble stimulus triggered chemotactic migration of U87 cells across the polycarbonate filter of transwell chambers, almost as intensively as fetal bovine serum. Unexpectedly, Gal-8 also enhanced U87 cell growth. Co-incubation of Gal-8 with lactose, which blocks galectin-glycan interactions, abrogated both effects. Immunoblot showed Gal-8 in conditioned media reflecting its secretion. U87 cells transduced with silencing shRNA in a lentiviral vector expressed and secreted 30-40 % of their normal Gal-8 levels. These cells maintained their migratory capabilities, but decreased their proliferation rate and underwent higher levels of apoptosis, as revealed by flow cytometry analysis of cell cycle, CFSE and activated caspase-3 staining. Proliferation seemed to be more sensitive than migration to Gal-8 expression levels. CONCLUSIONS: Gal-8, either secreted or exogenously enriched in the media, and acting through extracellular glycan interactions, constitutes a strong stimulus of directional migration in glioblastoma U87 cells and for the first time emerges as a factor that promotes proliferation and prevents apoptosis in cancerous cells. These properties could potentially contribute to the exaggerated malignancy of glioblastoma cells.


Subject(s)
Humans , Animals , Cattle , Brain Neoplasms/pathology , Glioblastoma/pathology , Galectins/physiology , Time Factors , Brain Neoplasms/genetics , Tumor Cells, Cultured , Cell Movement/physiology , Apoptosis/physiology , Glioblastoma/genetics , Reverse Transcriptase Polymerase Chain Reaction , Galectins/analysis , Galectins/pharmacology , Galectin 1/analysis , Galectin 1/physiology , Galectin 3/analysis , Galectin 3/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Flow Cytometry/methods
13.
FEBS J ; 281(9): 2172-89, 2014 May.
Article in English | MEDLINE | ID: mdl-24597955

ABSTRACT

Epidermal growth factor receptor (EGFR) exaggerated (oncogenic) function is currently targeted in cancer treatment with drugs that block receptor ligand binding or tyrosine kinase activity. Because endocytic trafficking is a crucial regulator of EGFR function, its pharmacological perturbation might provide a new anti-tumoral strategy. Inhibition of phosphatidic acid (PA) phosphohydrolase (PAP) activity has been shown to trigger PA signaling towards type 4 phosphodiesterase (PDE4) activation and protein kinase A inhibition, leading to internalization of empty/inactive EGFR. Here, we used propranolol, its l- and d- isomers and desipramine as PAP inhibitors to further explore the effects of PAP inhibition on EGFR endocytic trafficking and its consequences on EGFR-dependent cancer cell line models. PAP inhibition not only made EGFR inaccessible to stimuli but also prolonged the signaling lifetime of ligand-activated EGFR in recycling endosomes. Strikingly, such endocytic perturbations applied in acute/intermittent PAP inhibitor treatments selectively impaired cell proliferation/viability sustained by an exaggerated EGFR function. Phospholipase D inhibition with FIPI (5-fluoro-2-indolyl des-chlorohalopemide) and PDE4 inhibition with rolipram abrogated both the anti-tumoral and endocytic effects of PAP inhibition. Prolonged treatments with a low concentration of PAP inhibitors, although without detectable endocytic effects, still counteracted cell proliferation, induced apoptosis and decreased anchorage-independent growth of cells bearing EGFR oncogenic influences. Overall, our results show that PAP inhibitors can counteract EGFR oncogenic traits, including receptor overexpression or activating mutations resistant to current tyrosine kinase inhibitors, perturbing EGFR endocytic trafficking and perhaps other as yet unknown processes, depending on treatment conditions. This puts PAP activity forward as a new suitable target against EGFR-driven malignancy.


Subject(s)
Endocytosis , Enzyme Inhibitors/therapeutic use , ErbB Receptors/metabolism , Neoplasms/drug therapy , Phosphatidate Phosphatase/antagonists & inhibitors , Desipramine/pharmacology , Endosomes/drug effects , Endosomes/metabolism , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , Ligands , Phosphorylation , Propranolol/pharmacology
14.
Biol Res ; 46(3): 275-80, 2013.
Article in English | MEDLINE | ID: mdl-24346075

ABSTRACT

Galectin-8 belongs to a family of mammalian lectins that recognize glycoconjugates present on different cell surface components and modulate a variety of cellular processes. A role of Gal-8 in the immune system has been proposed based on its effects in immune cells, including T and B lymphocytes, as well as the presence of anti-Gal-8 autoantibodies in the prototypic autoimmune disease systemic lupus erythematosus (SLE). We have previously described that Gal-8 induces apoptosis in activated T cells interacting with certain ß1 integrins and this effect is counteracted by the anti-Gal-8 autoantibodies. Given that Gal-8 can potentially interact with several glycoproteins, here we analyzed the ß2 integrin Lymphocyte Function-Associated Antigen-1 (LFA-1), which is involved in leukocyte cell adhesion and immunological synapses. We show by GST-pull down assays that Gal-8 interacts with LFA-1 and this interaction is inhibited by anti-Gal-8 autoantibodies isolated from SLE patients. In cell adhesion assays, Gal-8 precluded the interaction of LFA-1 with its ligand Intracellular Adhesion Molecule-1 (ICAM-1). These results suggest that Gal-8 can exert immunosuppressive action not only by inducing apoptosis in activated T cells but also by negatively modulating the crucial function of LFA-1 in the immune system, while function-blocking autoantibodies counteract these effects.


Subject(s)
Galectins/metabolism , Intercellular Adhesion Molecule-1/metabolism , Lupus Erythematosus, Systemic/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Autoantibodies/immunology , Autoantibodies/metabolism , Cell Adhesion , Humans
15.
Front Cell Neurosci ; 7: 166, 2013.
Article in English | MEDLINE | ID: mdl-24133411

ABSTRACT

Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors.

16.
Biol. Res ; 46(3): 275-280, 2013. ilus, graf
Article in English | LILACS | ID: lil-692194

ABSTRACT

Galectin-8 belongs to a family of mammalian lectins that recognize glycoconjugates present on different cell surface components and modulate a variety of cellular processes. A role of Gal-8 in the immune system has been proposed based on its effects in immune cells, including T and B lymphocytes, as well as the presence of anti-Gal-8 autoantibodies in the prototypic autoimmune disease systemic lupus erythematosus (SLE). We have previously described that Gal-8 induces apoptosis in activated T cells interacting with certain β1 integrins and this effect is counteracted by the anti-Gal-8 autoantibodies. Given that Gal-8 can potentially interact with several glycoproteins, here we analyzed the β2 integrin Lymphocyte Function-Associated Antigen-1 (LFA-1), which is involved in leukocyte cell adhesion and immunological synapses. We show by GST-pull down assays that Gal-8 interacts with LFA-1 and this interaction is inhibited by anti-Gal-8 autoantibodies isolated from SLE patients. In cell adhesion assays, Gal-8 precluded the interaction of LFA-1 with its ligand Intracellular Adhesion Molecule-1 (ICAM-1). These results suggest that Gal-8 can exert immunosuppressive action not only by inducing apoptosis in activated T cells but also by negatively modulating the crucial function of LFA-1 in the immune system, while function-blocking autoantibodies counteract these effects.


Subject(s)
Humans , Galectins/metabolism , Intercellular Adhesion Molecule-1/metabolism , Lupus Erythematosus, Systemic/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Autoantibodies/immunology , Autoantibodies/metabolism , Cell Adhesion
17.
J Biol Chem ; 284(19): 12670-9, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19276072

ABSTRACT

Galectins have been implicated in T cell homeostasis playing complementary pro-apoptotic roles. Here we show that galectin-8 (Gal-8) is a potent pro-apoptotic agent in Jurkat T cells inducing a complex phospholipase D/phosphatidic acid signaling pathway that has not been reported for any galectin before. Gal-8 increases phosphatidic signaling, which enhances the activity of both ERK1/2 and type 4 phosphodiesterases (PDE4), with a subsequent decrease in basal protein kinase A activity. Strikingly, rolipram inhibition of PDE4 decreases ERK1/2 activity. Thus Gal-8-induced PDE4 activation releases a negative influence of cAMP/protein kinase A on ERK1/2. The resulting strong ERK1/2 activation leads to expression of the death factor Fas ligand and caspase-mediated apoptosis. Several conditions that decrease ERK1/2 activity also decrease apoptosis, such as anti-Fas ligand blocking antibodies. In addition, experiments with freshly isolated human peripheral blood mononuclear cells, previously stimulated with anti-CD3 and anti-CD28, show that Gal-8 is pro-apoptotic on activated T cells, most likely on a subpopulation of them. Anti-Gal-8 autoantibodies from patients with systemic lupus erythematosus block the apoptotic effect of Gal-8. These results implicate Gal-8 as a novel T cell suppressive factor, which can be counterbalanced by function-blocking autoantibodies in autoimmunity.


Subject(s)
Apoptosis/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Galectins/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphatidic Acids/metabolism , Blotting, Western , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Down-Regulation , Enzyme Activation/drug effects , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , Humans , Interleukin-2/genetics , Interleukin-2/metabolism , Jurkat Cells/metabolism , Jurkat Cells/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
18.
Proc Natl Acad Sci U S A ; 104(5): 1564-9, 2007 Jan 30.
Article in English | MEDLINE | ID: mdl-17244703

ABSTRACT

The epithelial-specific adaptor AP1B sorts basolateral proteins, but the trafficking routes where it performs its sorting role remain controversial. Here, we used an RNAi approach to knock down the medium subunit of AP1B (mu1B) in the prototype epithelial cell line Madin-Darby canine kidney (MDCK). Mu1B-knocked down MDCK cells displayed loss of polarity of several endogenous and exogenous basolateral markers transduced via adenovirus vectors, but exhibited normal polarity of apical markers. We chose two well characterized basolateral protein markers, the transferrin receptor (TfR) and the vesicular stomatitis virus G protein, to study the sorting role of AP1B. A surface-capture assay introduced here showed that mu1B-knocked down MDCK cells plated on filters at confluency and cultured for 4.5 d, sorted TfR correctly in the biosynthetic route but incorrectly in the recycling route. In contrast, these same cells missorted vesicular stomatitis virus G apically in the biosynthetic route. Strikingly, recently confluent MDCK cells (1-3 d) displayed AP1B-dependence in the biosynthetic route of TfR, which decreased with additional days in culture. Sucrose density gradient analysis detected AP1B predominantly in TfR-rich endosomal fractions in MDCK cells confluent for 1 and 4 d. Our results are consistent with the following model: AP1B sorts basolateral proteins in both biosynthetic and recycling routes of MDCK cells, as a result of its predominant functional localization in recycling endosomes, which constitute a post-Golgi station in the biosynthetic route of some plasma membrane proteins. TfR utilizes a direct route from Golgi to basolateral membrane that is established as the epithelial monolayer matures.


Subject(s)
Adaptor Protein Complex beta Subunits/physiology , Adaptor Protein Complex beta Subunits/chemistry , Animals , Cell Line , Cell Membrane/metabolism , Dogs , Endosomes/metabolism , Epithelial Cells/metabolism , Golgi Apparatus/metabolism , Models, Biological , Peptides/chemistry , Phenotype , Protein Transport , RNA, Small Interfering/metabolism , Receptors, Transferrin/metabolism , Receptors, Transferrin/physiology , Time Factors
19.
Exp Cell Res ; 312(4): 374-86, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16368432

ABSTRACT

Integrin-mediated encounters of T cells with extracellular cues lead these cells to adhere to a variety of substrates and acquire a spread phenotype needed for their tissue incursions. We studied the effects of galectin-8 (Gal-8), a beta-galactoside binding lectin, on Jurkat T cells. Immobilized Gal-8 bound alpha1beta1, alpha3beta1 and alpha5beta1 but not alpha2beta1 and alpha4beta1 and adhered these cells with similar kinetics to immobilized fibronectin (FN). Function-blocking experiments with monoclonal anti-integrin antibodies suggested that alpha5beta1 is the main mediator of cell adhesion to this lectin. Gal-8, but not FN, induced extensive cell spreading frequently leading to a polarized phenotype characterized by an asymmetric lamellipodial protrusion. These morphological changes involved actin cytoskeletal rearrangements controlled by PI3K, Rac-1 and ERK1/2 activity. Gal-8-induced Rac-1 activation and binding to alpha1 and alpha5 integrins have not been described in any other cellular system. Strikingly, Gal-8 was also a strong stimulus on Jurkat cells in suspension, triggering ERK1/2 activation that in most adherent cells is instead dependent on cell attachment. In addition, we found that patients with systemic lupus erythematosus (SLE), a prototypic autoimmune disorder, produce Gal-8 autoantibodies that impede both its binding to integrins and cell adhesion. These are the first function-blocking autoantibodies reported for a member of the galectin family. These results indicate that Gal-8 constitutes a novel extracellular stimulus for T cells, able to bind specific beta1 integrins and to trigger signaling pathways conducive to cell spreading. Gal-8 could modulate a wide range of T cell-driven immune processes that eventually become altered in autoimmune disorders.


Subject(s)
Galectins/metabolism , Integrin beta1/metabolism , Androstadienes/pharmacology , Antibodies, Monoclonal/pharmacology , Autoantibodies/pharmacology , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Shape/drug effects , Cell Surface Extensions/drug effects , Cell Surface Extensions/physiology , Cytochalasin D/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Fibronectins/metabolism , Fibronectins/pharmacology , Flavonoids/pharmacology , Galectins/antagonists & inhibitors , Galectins/pharmacology , Humans , Integrin beta1/immunology , Jurkat Cells , Leukemia, T-Cell/metabolism , Leukemia, T-Cell/pathology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic/immunology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Binding/drug effects , Protein Kinase Inhibitors/pharmacology , Thiogalactosides/pharmacology , Transfection , Wortmannin , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...