Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730839

ABSTRACT

Calcium phosphate (CaP) particles immobilizing antibacterial agents have the potential to be used as dental disinfectants. In this study, we fabricated CaP particles with immobilized ciprofloxacin (CF), a commonly prescribed antibacterial agent, via a coprecipitation process using a supersaturated CaP solution. As the aging time in the coprecipitation process increased from 2 to 24 h, the CaP phase in the resulting particles transformed from amorphous to low-crystalline hydroxyapatite, and their Ca/P elemental ratio, yield, and CF content increased. Despite the higher CF content, the particles aged for 24 h displayed a slower release of CF in a physiological salt solution, most likely owing to their crystallized matrix (less soluble hydroxyapatite), than those aged for 2 h, whose matrix was amorphous CaP. Both particles exhibited antibacterial and antibiofilm activities along with an acid-neutralizing effect against the major oral bacteria, Streptococcus mutans, Porphyromonas gingivalis, and Actinomyces naeslundii, in a dose-dependent manner, although their dose-response relationship was slightly different. The aging time in the coprecipitation process was identified as a governing factor affecting the physicochemical properties of the resulting CF-immobilized CaP particles and their functionality as a dental disinfectant.

2.
J Funct Biomater ; 15(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38391895

ABSTRACT

Calcium phosphate (CaP) coating of zirconia and zirconia-based implants is challenging, due to their chemical instability and susceptibility to thermal and mechanical impacts. A 3 mol% yttrium-stabilized tetragonal zirconia polycrystal was subjected to femtosecond laser (FsL) irradiation to form micro- and submicron surface architectures, prior to CaP coating using pulsed laser deposition (PLD) and low-temperature solution processing. Untreated zirconia, CaP-coated zirconia, and FsL-irradiated and CaP-coated zirconia were implanted in proximal tibial metaphyses of male Japanese white rabbits for four weeks. Radiographical analysis, push-out test, alizarin red staining, and histomorphometric analysis demonstrated a much improved bone-bonding ability of FsL-irradiated and CaP-coated zirconia over CaP-coated zirconia without FsL irradiation and untreated zirconia. The failure strength of the FsL-irradiated and CaP-coated zirconia in the push-out test was 6.2-13.1-times higher than that of the CaP-coated zirconia without FsL irradiation and untreated zirconia. Moreover, the adhesion strength between the bone and FsL-irradiated and CaP-coated zirconia was as high as that inducing host bone fracture in the push-out tests. The increased bone-bonding ability was attributed to the micro-/submicron surface architectures that enhanced osteoblastic differentiation and mechanical interlocking, leading to improved osteointegration. FsL irradiation followed by CaP coating could be useful for improving the osteointegration of cement-less zirconia-based joints and zirconia dental implants.

3.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338772

ABSTRACT

Coating layers consisting of a crystalline apatite matrix with immobilized basic fibroblast growth factor (bFGF) can release bFGF, thereby enhancing bone regeneration depending on their bFGF content. We hypothesized that the incorporation of fluoride ions into apatite crystals would enable the tailored release of bFGF from the coating layer depending on the layer's fluoride content. In the present study, coating layers consisting of fluoride-incorporated apatite (FAp) crystals with immobilized bFGF were coated on a porous collagen sponge by a precursor-assisted biomimetic process using supersaturated calcium phosphate solutions with various fluoride concentrations. The fluoride content in the coating layer increased with the increasing fluoride concentration of the supersaturated solution. The increased fluoride content in the coating layer reduced its solubility and suppressed the burst release of bFGF from the coated sponge into a physiological salt solution. The bFGF release was caused by the partial dissolution of the coating layer and, thus, accompanied by the fluoride release. The concentrations of released bFGF and fluoride were controlled within the estimated effective ranges in enhancing bone regeneration. These findings provide useful design guidelines for the construction of a mineralized, bFGF-releasing collagen scaffold that would be beneficial for bone tissue engineering, although further in vitro and in vivo studies are warranted.


Subject(s)
Apatites , Fluorides , Apatites/chemistry , Fibroblast Growth Factor 2/pharmacology , Collagen/chemistry , Tissue Engineering
4.
Int J Pharm ; 652: 123797, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38199447

ABSTRACT

Bone is a highly dynamic connective tissue that provides structural support, locomotion and acts as a shield for many vital organs from damage. Bone inherits the ability to heal after non-severe injury. In case of severe bone abnormalities due to trauma, infections, genetic disorders and tumors, there is a demand for a scaffold that can enhance bone formation and regenerate the lost bone tissue. In this study, a 3D collagen scaffold (CS) was functionalized and assessed under in vitro and in vivo conditions. For this, a collagen scaffold coated with hydroxyapatite (Ap-CS) was developed and loaded with a peptide LL-37. The physico-chemical characterisation confirmed the hydroxyapatite coating on the outer and inner surfaces of Ap-CS. In vitro studies confirmed that LL-37 loaded Ap-CS promotes osteogenic differentiation of human osteosarcoma cells without showing significant cytotoxicity. The efficacy of the LL-37 loaded Ap-CS for bone regeneration was evaluated at 4 and 12 weeks post-implantation by histopathological and micro-CT analysis in rabbit femur defect model. The implanted LL-37 loaded Ap-CS facilitated the new bone formation at 4 weeks compared with Ap-CS without LL-37. The LL-37 loaded Ap-CS incorporating apatite and peptide LL-37 would be useful as a multifunctional scaffold for bone tissue engineering.


Subject(s)
Osteogenesis , Tissue Scaffolds , Animals , Humans , Rabbits , Tissue Scaffolds/chemistry , Bone Regeneration , Bone and Bones , Collagen , Tissue Engineering , Durapatite/chemistry , Peptides
5.
Colloids Surf B Biointerfaces ; 230: 113502, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37574618

ABSTRACT

Basic fibroblast growth factor (bFGF) is a therapeutic protein that can enhance angiogenesis, wound healing, and tissue regeneration; however, it is extremely unstable even under a normal physiological environment. Biocompatible calcium phosphate (CaP) nanoparticles (NPs) co-immobilizing bFGF, heparin, and ferucarbotran would be useful as a multifunctional delivery carrier of bFGF. In this study, such NPs were successfully fabricated by a coprecipitation process, using a labile supersaturated CaP solution containing bFGF, heparin, and ferucarbotran. The NPs showed relatively high negative zeta potential (-12 mV) because of the negatively charged heparin, which enabled their stable dispersion in water. The hydrodynamic diameter of the NPs was around 200 nm. Immunoreactive bFGF was released from the NPs in an acellular medium dose-dependently. The NPs promoted proliferation of baby hamster kidney fibroblasts (BHK-21 cells) and mouse osteoblastic MC3T3-E1 cells at a certain dose range, although they inhibited proliferation of rat pheochromocytoma (PC-12) cells. These results demonstrated that the effect of the NPs on cell proliferation was dependent on the cell type and dose, the details of which should be investigated in a future study.


Subject(s)
Fibroblast Growth Factor 2 , Heparin , Rats , Mice , Animals , Fibroblast Growth Factor 2/pharmacology , Cell Proliferation , Heparin/pharmacology , Fibroblasts , Calcium Phosphates/pharmacology
6.
Pharmaceutics ; 15(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37111800

ABSTRACT

Current chemotherapy still suffers from unsatisfactory therapeutic efficacy, multi-drug resistance, and severe adverse effects, thus necessitating the development of techniques to confine chemotherapy drugs in the tumor microenvironment. Herein, we fabricated nanospheres of mesoporous silica (MS) doped with Cu (MS-Cu) and polyethylene glycol (PEG)-coated MS-Cu (PEG-MS-Cu) as exogenous copper supply systems to tumors. The synthesized MS-Cu nanospheres showed diameters of 30-150 nm with Cu/Si molar ratios of 0.041-0.069. Only disulfiram (DSF) and only MS-Cu nanospheres showed little cytotoxicity in vitro, whereas the combination of DSF and MS-Cu nanospheres showed significant cytotoxicity against MOC1 and MOC2 cells at concentrations of 0.2-1 µg/mL. Oral DSF administration in combination with MS-Cu nanospheres intratumoral or PEG-MS-Cu nanospheres intravenous administration showed significant antitumor efficacy against MOC2 cells in vivo. In contrast to traditional drug delivery systems, we herein propose a system for the in situ synthesis of chemotherapy drugs by converting nontoxic substances into antitumor chemotherapy drugs in a specific tumor microenvironment.

7.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555621

ABSTRACT

A simple, area-specific coating technique for fluoridated apatite (FAp) on teeth would be useful in dental applications. Recently, we achieved area-specific FAp coating on a human dentin substrate within 30 min by a laser-assisted biomimetic (LAB) process; pulsed Nd:YAG laser irradiation in a fluoride-containing supersaturated calcium phosphate solution (FCP solution). The LAB-processed, FAp-coated dentin substrate exhibited antibacterial activity against a major oral bacterium, Streptococcus mutans. In the present study, we refined the LAB process with a combination of a dental diode laser and a clinically approved light-absorbing molecule, indocyanine green (ICG). A micron-thick FAp layer was successfully formed on the dentin surface within only 3 min by the refined LAB process, i.e., dental diode laser irradiation in the FCP solution following ICG treatment. The ICG layer precoated on the dentin substrate played a crucial role in inducing rapid pseudo-biomineralization (FAp layer formation) on the dentin surface by absorbing laser light at the solid-liquid interface. In the refined LAB process, the precoated ICG layer was eliminated and replaced with the newly formed FAp layer composed of vertically oriented pillar-like nanocrystals. Cross-sectional ultrastructural analysis revealed a smooth interface between the FAp layer and the dentin substrate. The refined LAB process has potential as a tool for the tooth surface functionalization and hence, is worth further process refinement and in vitro and in vivo studies.


Subject(s)
Apatites , Lasers, Solid-State , Humans , Dentin/radiation effects , Biomineralization , Cross-Sectional Studies , Microscopy, Electron, Scanning
8.
J Biomed Mater Res A ; 110(12): 1964-1975, 2022 12.
Article in English | MEDLINE | ID: mdl-36183359

ABSTRACT

Biodegradable sheets loaded with basic fibroblast growth factor (bFGF) are prepared as novel bFGF-releasing systems from polyglycolic acid nonwoven fabric by oxygen plasma treatment followed by bFGF adsorption. In the present study, we investigated the therapeutic effects of this system on a focal cerebral infarction model (CB-17 mouse). A preliminary in vitro study showed that this system released bFGF in an acellular culture medium, thereby keeping the bFGF concentration in the medium at ≥5 ng/ml for a prolonged period of 7 days. The released bFGF from this system retained its biological activity to enhance endothelial tube formation in vitro. In a mouse model of subacute focal cerebral infarction, this system increased the expression of endogenous vascular endothelial growth factor in the peri-infarct cortex and subventricular zone, promoted angiogenesis in the striatum, and increased neural progenitor cells in the peri-infarct cortex. Thus, this bFGF-releasing system has the potential to be a novel therapeutic approach for cerebral infarction.


Subject(s)
Neural Stem Cells , Polyglycolic Acid , Animals , Cerebral Infarction/therapy , Fibroblast Growth Factor 2/pharmacology , Mice , Neural Stem Cells/metabolism , Oxygen , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors
9.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36232830

ABSTRACT

Previously, we achieved one-pot fabrication of heparin-immobilized calcium phosphate (CaP) nanoparticles with high dispersibility by a precipitation process in a highly supersaturated reaction solution. In this study, we revealed that the heparin-immobilized CaP nanoparticles have a greater co-immobilizing capacity for basic proteins than for acidic proteins. In this process, heparin acted as not only a particle-dispersing agent but also as an immobilizing agent for basic proteins; it remarkably (approximately three-fold) improved the immobilization efficiency of cytochrome C (a model basic protein) within the CaP nanoparticles. The content of cytochrome C immobilized within the nanoparticles was increased with an increase in cytochrome C concentration in the reaction solution and by aging the nanoparticles. The obtained nanoparticles were dispersed well in water owing to their large negative zeta potentials derived from heparin, irrespective of the content of cytochrome C. Similar results were obtained also for another basic protein, lysozyme, but not for an acidic protein, albumin; the immobilization efficiency of albumin within the nanoparticles was decreased by heparin. These findings provide new insights into the co-immobilization strategy of proteins within heparin-immobilized CaP nanoparticles and will be useful in the design and fabrication of nanocarriers for protein delivery applications.


Subject(s)
Nanoparticles , Phosphates , Albumins , Calcium Phosphates , Cytochromes c , Heparin , Muramidase , Proteins , Water
10.
J Oral Biosci ; 64(2): 217-221, 2022 06.
Article in English | MEDLINE | ID: mdl-35351642

ABSTRACT

BACKGROUND: Development of new clinical regenerative procedures is needed for the reconstruction of the connective tissue attachment lost to periodontal disease. Apatite coating on the affected root surfaces could improve root surface biocompatibility and promote the reestablishment of connective tissue attachment. HIGHLIGHT: We developed two novel techniques that use laser light for coating the tooth surface with apatite. In the laser-assisted biomimetic (LAB) process, a tooth substrate was placed in a supersaturated calcium phosphate solution and irradiated for 30 min with low-energy pulsed laser light. Due to the laser-assisted pseudo-biomineralization, a submicron-thick apatite film was created on the laser-irradiated tooth surface. Furthermore, we created a fluoride-incorporated apatite film on the tooth surface using the LAB process and demonstrated its antibacterial activity against Streptococcus mutans. In the laser-induced forward transfer with optical stamp (LIFTOP) process, a thin apatite film loaded with the cell-adhesion protein, fibronectin, was prepared beforehand as a raw material on the optical stamp (carbon- and polydimethylsiloxane-coated support) by a conventional biomimetic process. After irradiation with a single laser pulse, the film (microchip) was transferred onto a tooth substrate via laser ablation of the carbon sacrificial layer. The LIFTOP process requires only a short processing time and has a minimal heat effect on the film; thus, the film exhibits cell adhesion activity even after the LIFTOP process. CONCLUSION: The LAB and LIFTOP processes have the potential as novel tools for tooth surface modification in the treatment of periodontal disease.


Subject(s)
Apatites , Periodontal Diseases , Carbon , Humans , Lasers , Surface Properties
11.
Mol Imaging Biol ; 24(5): 692-699, 2022 10.
Article in English | MEDLINE | ID: mdl-34580810

ABSTRACT

PURPOSE: Macrophages contribute to the progression of vascular inflammation, making them useful targets for imaging and treatment of vascular diseases. Gold nanoparticles (GNPs) are useful as computed tomography (CT) contrast agents and light absorbers in photothermal therapy. In this study, we aimed to assess the viability of macrophages incubated with GNPs after near-infrared (NIR) laser light exposure and to evaluate the utility of intravenously injected GNPs for in vivo imaging of vascular inflammation in mice using micro-CT. PROCEDURES: Mouse macrophage cells (RAW 264.7) were incubated with GNPs and assessed for GNP cellular uptake and cell viability before and after exposure to NIR laser light. For in vivo imaging, macrophage-rich atherosclerotic lesions were induced by carotid ligation in hyperlipidemic and diabetic FVB mice (n = 9). Abdominal aortic aneurysms (AAAs) were created by angiotensin II infusion in ApoE-deficient mice (n = 9). These mice were scanned with a micro-CT imaging system before and after the intravenous injection of GNPs. RESULTS: The CT attenuation values of macrophages incubated with GNPs were significantly higher than those of cells incubated without GNPs (p < 0.04). Macrophages incubated with and without GNPs showed similar viability. The viability of macrophages incubated with GNPs (100 µg/ml or 200 µg/ml) was decreased by high-intensity NIR laser exposure but not by low-intensity NIR laser exposure. In vivo CT images showed higher CT attenuation values in diseased carotid arteries than in non-diseased contralateral arteries, although the difference was not statistically significant. The CT attenuation values of the perivascular area in AAAs of mice injected with GNPs were significantly higher than those of mice without injection (p = 0.0001). CONCLUSIONS: Macrophages with GNPs had reduced viability upon NIR laser exposure. GNPs intravenously injected into mice accumulated in sites of vascular inflammation, allowing detection of carotid atherosclerosis and AAAs in CT imaging. Thus, GNPs have potential as multifunctional biologically compatible particles for the detection and therapy of vascular inflammation.


Subject(s)
Gold , Metal Nanoparticles , Animals , Mice , Contrast Media , Angiotensin II , Tomography, X-Ray Computed , Mice, Inbred Strains , Inflammation/diagnostic imaging , Inflammation/pathology , Apolipoproteins E
12.
J Periodontal Res ; 57(1): 205-218, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34786723

ABSTRACT

BACKGROUND AND OBJECTIVES: In the treatment of severe periodontal destruction, there is a strong demand for advanced scaffolds that can regenerate periodontal tissues with adequate quality and quantity. Recently, we developed a plasma- and precursor-assisted biomimetic process by which a porous collagen scaffold (CS) could be coated with low-crystalline apatite. The apatite-coated collagen scaffold (Ap-CS) promotes cellular ingrowth within the scaffold compared to CS in rat subcutaneous tissue. In the present study, the osteogenic activity of Ap-CS was characterized by cell culture and rat skull augmentation tests. In addition, the periodontal tissue reconstruction with Ap-CS in a beagle dog was compared to that with CS. METHODS: The plasma- and precursor-assisted biomimetic process was applied to CS to obtain Ap-CS with a low-crystalline apatite coating. The effects of apatite coating on the scaffold characteristics (i.e., surface morphology, water absorption, Ca release, protein adsorption, and enzymatic degradation resistance) were assessed. Cyto-compatibility and the osteogenic properties of Ap-CS and CS were assessed in vitro using preosteoblastic MC3T3-E1 cells. In addition, we performed in vivo studies to evaluate bone augmentation and periodontal tissue reconstruction with Ap-CS and CS in a rat skull and canine furcation lesion, respectively. RESULTS: As previously reported, the plasma- and precursor-assisted biomimetic process generated a low-crystalline apatite layer with a nanoporous structure that uniformly covered the Ap-CS surface. Ap-CS showed significantly higher water absorption, Ca release, lysozyme adsorption, and collagenase resistance than CS. Cell culture experiments revealed that Ap-CS was superior to CS in promoting the osteoblastic differentiation of MC3T3-E1 cells while suppressing their proliferation. Additionally, Ap-CS significantly promoted (compared to CS) the augmentation of the rat skull bone and showed the potential to regenerate alveolar bone in a dog furcation defect. CONCLUSION: Ap-CS fabricated by the plasma- and precursor-assisted biomimetic process provided superior promotion of osteogenic differentiation and bone neoformation compared to CS.


Subject(s)
Apatites , Tissue Engineering , Animals , Biomimetics , Bone Regeneration , Collagen , Dogs , Osteogenesis , Rats , Tissue Scaffolds
13.
Materials (Basel) ; 14(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34640257

ABSTRACT

Surface-mineralized collagen sponges have attracted much attention as scaffolds for bone tissue engineering. Recently, we developed amorphous calcium phosphate (ACP) and low-crystalline apatite coating processes on collagen sponges. In the present study, we applied these coating processes to granular collagen sponges (referred to as Col) to compare the bone tissue regeneration capabilities of ACP-coated and apatite-coated Col (referred to as Col-ACP and Col-Ap, respectively) using a rat cranial bone defect model. According to micro-CT and histological analyses, Col-Ap enhanced bone tissue regeneration compared to Col, whereas Col-ACP did not. These results not only demonstrated the superior bone tissue regeneration capability of Col-Ap, but also indicated limitations of the in vitro simulated body fluid (SBF) test used in our previous study. Despite the apatite-forming ability of Col-ACP in SBF, it was ineffective in improving bone tissue regeneration in vivo, unlike Col-Ap, most likely due to the quick resorption of the ACP coating in the defect site. The present results clarified the importance of the coating stability in vivo and revealed that the low-crystalline apatite coating was more beneficial than the ACP coating in the fabrication of surface-mineralized collagen sponges for use as bone tissue engineering scaffolds.

14.
Nanotechnology ; 32(34)2021 May 31.
Article in English | MEDLINE | ID: mdl-34057430

ABSTRACT

Atherosclerosis is a macrophage-related inflammatory disease that remains a leading cause of death worldwide. Magnetic iron oxide (IO) nanocrystals are clinically used as magnetic resonance imaging contrast agents and their application as a detection agent for macrophages in arterial lesions has been studied extensively. We recently fabricated heparin-modified calcium phosphate (CaP) nanoparticles loaded with a large number of IO nanocrystals via coprecipitation from a supersaturated CaP solution supplemented with heparin and ferucarbotran (IO nanocrystals coated with carboxydextran). In this study, we further increased the content of IO nanocrystals in the heparin-modified IO-CaP composite nanoparticles by increasing the ferucarbotran concentration in the supersaturated CaP solution. The increase in nanoparticle IO content caused a decrease in particle diameter without impairing its dispersibility; the nanoparticles remained dispersed in water for up to 2 h due to electrostatic repulsion between particles due to the surface modification with heparin. The nanoparticles were more effectively taken up by murine RAW264.7 macrophages compared to free ferucarbotran without showing significant cytotoxicity. A preliminaryin vivostudy showed that the nanoparticles injected intravenously into mice delivered more IO nanocrystals to macrophage-rich carotid arterial lesions than free ferucarbotran. Our nanoparticles have potential as a delivery agent of IO nanocrystals to macrophages in arterial lesions.


Subject(s)
Atherosclerosis/drug therapy , Calcium Phosphates/administration & dosage , Ferric Compounds/chemistry , Streptozocin/adverse effects , Administration, Intravenous , Animals , Atherosclerosis/etiology , Calcium Phosphates/chemical synthesis , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Dextrans/chemistry , Disease Models, Animal , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetite Nanoparticles/chemistry , Male , Mice , Nanocomposites , RAW 264.7 Cells , Treatment Outcome
15.
Materials (Basel) ; 14(3)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572553

ABSTRACT

Basic fibroblast growth factor (bFGF) is a crucial supplement for culture media of human pluripotent stem cells. However, bFGF is extremely unstable under cell culture conditions, which makes frequent (generally every day) medium refreshment requisite. We recently developed a water-floatable, bFGF-releasing membrane via a simple bFGF adsorption process following oxygen plasma treatment by utilizing a polyethylene nonwoven fabric as an adsorbent. This membrane allowed sustained release of bFGF while floating on medium, thereby keeping the bFGF concentration in the medium sufficient for maintaining human-induced pluripotent stem cells (iPSCs) in a proliferative and pluripotent state for as long as 3 days. In this study, lyophilization was applied to the membrane to stabilize bFGF. The sustained bFGF-releasing function of the membrane was kept unchanged even after lyophilization and subsequent cryopreservation at -30 °C for 3 months. The cryopreserved membrane supported proliferation and colony formation of human iPSCs while retaining their viability and pluripotency in a medium-change-free continuous culture for 3 days. The present bFGF-releasing membrane is ready-to-use, storable for at least 3 months, and obviates daily medium refreshment. Therefore, it is a new and more practical bFGF supplement for culture media of human stem cells.

16.
Mater Sci Eng C Mater Biol Appl ; 116: 111170, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32806265

ABSTRACT

A technique for implementing biocompatible and antibacterial functions to a targeted region on tooth surfaces has potential in dental treatments. We have recently demonstrated pseudo-biomineralization, i.e., the growth of an apatite layer on a human dentin substrate by a laser-assisted biomimetic (LAB) process, based on pulsed laser irradiation in a supersaturated CaP solution. In this study, pseudo-biomineralization was induced in the presence of fluoride ions using the LAB process in order to fabricate an antibacterial fluoride-incorporated apatite (FAp) layer on the dentin surface. After processing for 30 min, a micron-thick FAp layer was formed heterogeneously at the laser-irradiated solid-liquid interface via pseudo-biomineralization. A time-course study revealed that the LAB process first eliminated the pre-existing organic layer, while allowing fluoride incorporation into the dentin surface within 1 min. Within 5 min, FAp nanocrystals precipitated on the dentin surface. Within 30 min, these nanocrystals acquired a pillar-like structure that was weakly oriented in the direction normal to the substrate surface to form a dense micron-thick layer. This layer was integrated seamlessly with the underlying dentin without any apparent gaps. The FAp layer exhibited antibacterial activity against a major oral bacterium, Streptococcus mutans. The proposed LAB process is expected to be a useful new tool for tooth surface functionalization via facile and area-specific pseudo-biomineralization.


Subject(s)
Anti-Bacterial Agents , Biomineralization , Lasers , Anti-Bacterial Agents/pharmacology , Apatites , Dentin , Fluorides , Humans
17.
Mater Sci Eng C Mater Biol Appl ; 116: 111194, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32806285

ABSTRACT

Amorphous calcium phosphate (ACP) plays an important role in biomineralization within the three-dimensional (3D) collagen network in human hard tissues, and exhibits osteoconductivity. Porous collagen sponges coated with ACP nanoparticles could be considered as potential scaffolds for use in bone tissue engineering. In this study, such composite materials were fabricated via homogeneous ACP precipitation using a supersaturated calcium phosphate (CaP) solution. Homogeneous ACP precipitation was induced in situ within the sponges by a temperature-controlled coating process composed of two steps. In the first step, the CaP solution was cooled to 4 °C to suppress precipitation until the solution penetrated fully into the sponge's internal pores. In the second step, the CaP solution was warmed up to 25 °C with continuous shaking to induce ACP precipitation within the sponges. The resulting sponges were therefore coated with ACP nanoparticles on their inner and outer surfaces. A simulated body fluid (SBF) test indicated osteoconductivity of the collagen sponges coated with ACP nanoparticles. Further, ACP-coated collagen sponges immobilizing basic fibroblast growth factor (bFGF) were fabricated using the CaP solution supplemented with bFGF. The fabricated sponges allowed the sustained release of bFGF in a culture medium and enhanced proliferation of osteoblastic MC3T3-E1 cells. Such ACP-coated collagen sponges have the potential to be used as scaffolds in bone tissue engineering if pursued for further in vitro and in vivo studies.


Subject(s)
Nanoparticles , Tissue Engineering , Calcium Phosphates , Collagen , Humans , Porosity , Tissue Scaffolds
18.
Mater Sci Eng C Mater Biol Appl ; 116: 111146, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32806323

ABSTRACT

Tooth root surfaces restored with dental resin composites exhibit inferior biocompatibility. The objective of this study was to develop a simple technique for coating apatite onto a resin composite to improve its surface biocompatibility. First, we fabricated a polymer film coated with a micro-rough apatite layer and pressed it (coating-side down) onto a viscous resin composite precursor. As a result of light-induced curing of the precursor through the overlaid film, the micro-rough apatite layer was integrated with the resin composite and, thus, transferred from the polymer film surface to the cured resin composite surface as a result of the difference in interfacial adhesion strength. The transferred apatite layer attached directly to the cured resin composite without any gaps at the microscopic level. The adhesion between the apatite layer and the cured resin composite was so strong that the layer was not peeled off even by a tape-detaching test. The flexural strength of the resulting apatite-coated resin composite was comparable to that of the clinically used resin composite while satisfying the ISO requirement for dental polymer-based restorative materials. Furthermore, the apatite-coated resin composite showed better cell compatibility than the uncoated resin composite. The present apatite coating technique is well suited for dental treatment because the coating is applied during a conventional light curing procedure through simple utilization of the apatite-coated polymer film in place of an uncoated film. The proposed technique represents a practical evolution in dental treatment using light-curing resin composites, although further in vitro and in vivo studies are needed.


Subject(s)
Dental Bonding , Light-Curing of Dental Adhesives , Apatites , Composite Resins , Curing Lights, Dental , Materials Testing , Resin Cements , Surface Properties
19.
Colloids Surf B Biointerfaces ; 194: 111169, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32554258

ABSTRACT

Calcium phosphate (CaP) nanoparticles immobilizing gold (Au) nanocrystals (Au-CaP composite nanoparticles) would be useful in diagnoses and/or treatments with Au nanocrystals. In this study, we achieved the rapid one-pot fabrication of such nanoparticles via coprecipitation in labile supersaturated CaP solutions by using appropriate Au sources, namely, Au nanocrystals coated with amino-terminated polyethylene glycol (PEG). In this process, amino groups at the PEG terminal played a crucial role in the coprecipitation with CaP through affinity interactions, and thus in the formation of Au-CaP composite nanoparticles; however, the molecular weight of the PEG chain was not a controlling factor in the coprecipitation. The important role of the functional groups at the PEG terminal was suggested by comparison with Au nanocrystals coated with carboxyl- and methoxy-terminated PEG, both of which barely coprecipitated with CaP and failed to form Au-CaP composite nanoparticles. Au nanocrystals coated with amino-terminated PEG were immobilized on the CaP nanoparticles, thereby regulating their size (∼140 nm in hydrodynamic diameter) and their dispersion in water. This coprecipitation process and the resulting Au-CaP composite nanoparticles have great potential in biomedical applications.


Subject(s)
Metal Nanoparticles , Nanoparticles , Calcium Phosphates , Gold , Polyethylene Glycols
20.
Materials (Basel) ; 12(24)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861175

ABSTRACT

Calcium phosphate (CaP)-based submicrospheres containing magnetic iron oxide (IO) nanoparticles (IO-CaP submicrospheres) have potential for various biomedical applications. We recently achieved facile one-pot fabrication of IO-CaP submicrospheres using a laser-assisted precipitation process in which weak pulsed laser irradiation was applied to a labile CaP reaction mixture supplemented with ferrous ions under adequate pH. In this study, we performed cross-sectional transmission electron microscopy (TEM) analysis of the resulting IO-CaP submicrospheres. The cross-sectional TEM analysis revealed that the IO-CaP submicrospheres were heterogeneous in their internal nanostructures and could be categorized into two types, namely types A and B. The type A submicrospheres contained single nano-sized IO nanoparticles homogeneously dispersed throughout the CaP-based matrix. The type B submicrospheres contained larger IO nanoparticles with an irregular or spherical shape, which were mostly a few tens of nanometers in size along with one or two submicron-sized domains. These findings provide new insight into the formation mechanism of IO-CaP submicrospheres in this fabrication technique as well as future applications of the resulting IO-CaP submicrospheres.

SELECTION OF CITATIONS
SEARCH DETAIL
...