Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Plant Physiol ; 168(2): 103-8, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-20630616

ABSTRACT

Electrical excitability and signaling, frequently associated with rapid responses to environmental stimuli, have been documented in both animals and higher plants. The presence of electrical potentials (EPs), such as action potentials (APs) and variation potentials (VPs), in plant cells suggests that plants make use of ion channels to transmit information over long distances. The reason why plants have developed pathways for electrical signal transmission is most probably the necessity to respond rapidly, for example, to environmental stress factors. We examined the nature and specific characteristics of the electrical response to wounding in the woody plant Persea americana (avocado). Under field conditions, wounds can be the result of insect activity, strong winds or handling injury during fruit harvest. Evidence for extracellular EP signaling in avocado trees after mechanical injury was expressed in the form of variation potentials. For tipping and pruning, signal velocities of 8.7 and 20.9 cm/s, respectively, were calculated, based on data measured with Ag/AgCl microelectrodes inserted at different positions of the trunk. EP signal intensity decreased with increasing distance between the tipping and pruning point and the electrode. Recovery time to pre-tipping or pre-pruning EP values was also affected by the distance and signal intensity from the tipping or pruning point to the specific electrode position. Real time detection of remote EP signaling can provide an efficient tool for the early detection of insect attacks, strong wind damage or handling injury during fruit harvest. Our results indicate that electrical signaling in avocado, resulting from microenvironment modifications, can be quantitatively related to the intensity and duration of the stimuli, as well as to the distance between the stimuli site and the location of EP detection. These results may be indicative of the existence of a specific kind of proto-nervous system in plants.


Subject(s)
Electrophysiology/methods , Persea/metabolism , Action Potentials/physiology , Electrodes , Persea/physiology
2.
Plant Signal Behav ; 5(1): 34-41, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20592805

ABSTRACT

Plant responses to environmental changes are associated with electrical excitability and signaling; automatic and continuous measurements of electrical potential differences (DeltaEP) between plant tissues can be effectively used to study information transport mechanisms and physiological responses that result from external stimuli on plants. The generation and conduction of electrochemical impulses within plant different tissues and organs, resulting from abiotic and biotic changes in environmental conditions is reported. In this work, electrical potential differences are monitored continuously using Ag/AgCl microelectrodes, inserted 5 mm deep into sapwood at two positions in the trunks of several Avocado trees. Electrodes are referenced to a non polarisable Ag/AgCl microelectrode installed 20 cm deep in the soil. Systematic patterns of DeltaEP during absolute darkness, day-night cycles and different conditions of soil water availability are discussed as alternative tools to assess early plant stress conditions.


Subject(s)
Acclimatization/physiology , Light , Membrane Potentials , Persea/physiology , Water , Darkness , Droughts , Microelectrodes , Plant Stems/physiology , Signal Transduction , Soil , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL