Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Ecol Lett ; 25(2): 509-520, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34971476

ABSTRACT

Theory suggests that relatives will cooperate more, and compete less, because of an increased benefit for shared genes. In symbiotic partnerships, hosts may benefit from interacting with highly related symbionts because there is less conflict among the symbionts. This has been difficult to test empirically. We used the arbuscular mycorrhizal symbiosis to study the effects of fungal relatedness on host and fungal benefits, creating fungal networks varying in relatedness between two hosts, both in soil and in-vitro. To determine how fungal relatedness affected overall transfer of nutrients, we fluorescently tagged phosphorus and quantified resource distribution between two root systems. We found that colonization by less-related fungi was associated with increased fungal growth, lower transport of nutrients across the network, and lower plant benefit - likely an outcome of increased fungal competition. More generally, we demonstrate how symbiont relatedness can mediate benefits of symbioses.


Subject(s)
Mycorrhizae , Fungi , Mycorrhizae/genetics , Phosphorus , Plant Roots , Plants , Symbiosis
2.
ISME J ; 15(2): 435-449, 2021 02.
Article in English | MEDLINE | ID: mdl-32989245

ABSTRACT

Arbuscular mycorrhizal fungi function as conduits for underground nutrient transport. While the fungal partner is dependent on the plant host for its carbon (C) needs, the amount of nutrients that the fungus allocates to hosts can vary with context. Because fungal allocation patterns to hosts can change over time, they have historically been difficult to quantify accurately. We developed a technique to tag rock phosphorus (P) apatite with fluorescent quantum-dot (QD) nanoparticles of three different colors, allowing us to study nutrient transfer in an in vitro fungal network formed between two host roots of different ages and different P demands over a 3-week period. Using confocal microscopy and raster image correlation spectroscopy, we could distinguish between P transfer from the hyphae to the roots and P retention in the hyphae. By tracking QD-apatite from its point of origin, we found that the P demands of the younger root influenced both: (1) how the fungus distributed nutrients among different root hosts and (2) the storage patterns in the fungus itself. Our work highlights that fungal trade strategies are highly dynamic over time to local conditions, and stresses the need for precise measurements of symbiotic nutrient transfer across both space and time.


Subject(s)
Mycorrhizae , Apatites , Nutrients , Phosphorus , Plant Roots , Symbiosis
3.
Phys Rev E ; 97(4-1): 042901, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758609

ABSTRACT

The behavior of a vertically vibrated granular bed is reminiscent of a liquid in that it exhibits many phenomena such as convection and Faraday-like surface waves. However, when the lateral dimensions of the bed are confined such that a quasi-one-dimensional geometry is formed, the only phenomena that remain are bouncing bed and the granular Leidenfrost effect. This permits the observation of the granular Leidenfrost state for a wide range of energy injection parameters and more specifically allows for a thorough characterization of the low-frequency oscillation (LFO) that is present in this state. In both experiments and particle simulations we determine the LFO frequency from the power spectral density of the center-of-mass signal of the grains, varying the amplitude and frequency of the driving, the particle diameter, and the number of layers in the system. We thus find that the LFO frequency (i) is inversely proportional to the fast inertial timescale and (ii) decorrelates with a typical decay time proportional to the slow dissipative timescale in the system. The latter is consistent with the view that the LFO is driven by the inherent noise that is present in the granular Leidenfrost state with a low number of particles.

4.
Phys Rev E ; 95(3-1): 030602, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28415204

ABSTRACT

Suspensions of cornstarch in water exhibit strong dynamic shear thickening. We show that partly replacing water with ethanol strongly alters the suspension rheology. We perform steady and nonsteady rheology measurements combined with atomic force microscopy to investigate the role of fluid chemistry on the macroscopic rheology of the suspensions and its link with the interactions between cornstarch grains. Upon increasing the ethanol content, the suspension goes through a yield-stress fluid state and ultimately becomes a shear-thinning fluid. On the cornstarch grain scale, atomic force microscopy measurements reveal the presence of polymers on the cornstarch surface, which exhibit a cosolvency effect. At intermediate ethanol content, a maximum of polymer solubility induces high microscopic adhesion which we relate to the macroscopic yield stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...