Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
5.
Data Brief ; 30: 105362, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32280732

ABSTRACT

Intrinsic reaction coordinate (IRC) data regarding the interactions of water with a carbene-like active site located at the edge of a polyaromatic hydrocarbon [1-3] has been obtained using density functional theory (DFT) and the 6-31g(d) basis set as implemented in the Gaussian 16 software [4]. The data is presented as two videos (frontal and lateral mechanism views) combining four consecutive IRC calculations corresponding to the four different transition states presented on "https://doi.org/10.1016/j.carbon.2020.01.011" [3] (Figure 6, side approach). These videos provide powerful insights on two key aspects: a) the rotational process that occurs during water adsorption and b) the hydrogen gas desorption process during water gasification of carbons.

6.
Phys Chem Chem Phys ; 20(42): 26968-26978, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30327811

ABSTRACT

Aiming to better understand the reactivity of graphene-based materials, the present work employs density functional theory that provides detailed information about spin-density distributions for single and contiguous pairs of carbene-like active sites. In order to examine the extent to which different models, methodologies, and approximations affect the outcome, our calculations employ the AIMPRO, QuantumEspresso and Gaussian program packages. Models are in the form of polycyclic aromatic hydrocarbons (PAHs) and graphene nanoribbons (GNRs), both isolated and within supercells with periodic boundary conditions. Benchmarking calculations for the phenyl radical and cation are also presented. General agreement is found among the methods and also with previous studies. A significant electron spin polarization (spin density >1.096 electron spin) on the active sites is seen in both periodic and cluster systems, but it tends to be lower for GNRs than graphene clusters. The effect of the functional seems to be much more important than the position of singularities at the edges of the GNRs. Finally, we show the interactions and effects on spin density when a single site lies at the edge of a bilayer GNR, where bonding between layers may occur under specific circumstances.

SELECTION OF CITATIONS
SEARCH DETAIL
...