Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 13: 460, 2019.
Article in English | MEDLINE | ID: mdl-31680871

ABSTRACT

Clinical evidence has revealed that children born from mothers exposed to viral and bacterial pathogens during pregnancy are more likely to suffer various neurological disorders including schizophrenia, autism bipolar disorder, major depression, epilepsy, and cerebral palsy. Despite that most research has centered on the impact of prenatal inflammation in neurons and microglia, the potential modifications of astrocytes and neuron-astrocyte communication have received less scrutiny. Here, we evaluated whether prenatally LPS-exposed offspring display alterations in the opening of astrocyte hemichannels and pannexons in the hippocampus, together with changes in neuroinflammation, intracellular Ca2+ and nitric oxide (NO) signaling, gliotransmitter release, cell arborization, and neuronal survival. Ethidium uptake recordings revealed that prenatal LPS exposure enhances the opening of astrocyte Cx43 hemichannels and Panx1 channels in the hippocampus of adult offspring mice. This enhanced channel activity occurred by a mechanism involving a microglia-dependent production of IL-1ß/TNF-α and the stimulation of p38 MAP kinase/iNOS/[Ca2+]i-mediated signaling and purinergic/glutamatergic pathways. Noteworthy, the activity of Cx43 hemichannels affected the release of glutamate, [Ca2+]i handling, and morphology of astrocytes, whereas also disturbed neuronal function, including the dendritic arbor and spine density, as well as survival. We speculate that excitotoxic levels of glutamate triggered by the activation of Cx43 hemichannels may contribute to hippocampal neurotoxicity and damage in prenatally LPS-exposed offspring. Therefore, the understanding of how astrocyte-neuron crosstalk is an auspicious avenue toward the development of broad treatments for several neurological disorders observed in children born to women who had a severe infection during gestation.

2.
Glia ; 67(8): 1598-1619, 2019 08.
Article in English | MEDLINE | ID: mdl-31033038

ABSTRACT

Diverse studies have suggested that cytoplasmic inclusions of misfolded α-synuclein in neuronal and glial cells are main pathological features of different α-synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α-synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron-glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α-synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin-1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+ ]i ), and purinergic and glutamatergic signaling. Relevantly, the α-synuclein-induced opening of hemichannels and pannexons resulted in alterations in [Ca2+ ]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α-synuclein-mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α-synucleinopathies.


Subject(s)
Astrocytes/pathology , Cell Death/genetics , Connexin 43/genetics , Connexins/genetics , Nerve Tissue Proteins/genetics , alpha-Synuclein/genetics , Animals , Calcium Channels/genetics , Calcium Channels/metabolism , Cell Communication/genetics , Cells, Cultured , Cytokines/metabolism , Mice , Mitochondria/genetics , Mitochondria/ultrastructure , Neurotransmitter Agents/metabolism , Nitric Oxide/biosynthesis , RNA, Small Interfering/genetics
3.
Front Cell Neurosci ; 13: 3, 2019.
Article in English | MEDLINE | ID: mdl-30760982

ABSTRACT

Oligodendrocytes are the myelin forming cells in the central nervous system (CNS). In addition to this main physiological function, these cells play key roles by providing energy substrates to neurons as well as information required to sustain proper synaptic transmission and plasticity at the CNS. The latter requires a fine coordinated intercellular communication with neurons and other glial cell types, including astrocytes. In mammals, tissue synchronization is mainly mediated by connexins and pannexins, two protein families that underpin the communication among neighboring cells through the formation of different plasma membrane channels. At one end, gap junction channels (GJCs; which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells allowing electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments, serving as diffusion pathways of ions and small molecules. Here, we briefly review the current knowledge about the expression and function of hemichannels, pannexons and GJCs in oligodendrocytes, as well as the evidence regarding the possible role of these channels in metabolic and synaptic functions at the CNS. In particular, we focus on oligodendrocyte-astrocyte coupling during axon metabolic support and its implications in brain health and disease.

4.
Front Cell Neurosci ; 12: 472, 2018.
Article in English | MEDLINE | ID: mdl-30564103

ABSTRACT

A mounting body of evidence indicates that adolescents are specially more susceptible to alcohol influence than adults. However, the mechanisms underlying this phenomenon remain poorly understood. Astrocyte-mediated gliotransmission is crucial for hippocampal plasticity and recently, the opening of hemichannels and pannexons has been found to participate in both processes. Here, we evaluated whether adolescent rats exposed to ethanol exhibit changes in the activity of astrocyte hemichannels and pannexons in the hippocampus, as well as alterations in astrocyte arborization and cytokine levels. Adolescent rats were subjected to ethanol (3.0 g/kg) for two successive days at 48-h periods over 14 days. The opening of hemichannels and pannexons was examined in hippocampal slices by dye uptake, whereas hippocampal cytokine levels and astroglial arborization were determined by ELISA and Sholl analysis, respectively. We found that adolescent ethanol exposure increased the opening of connexin 43 (Cx43) hemichannels and pannexin-1 (Panx1) channels in astrocytes. Blockade of p38 mitogen-activated protein kinase (MAPK), inducible nitric oxide synthase (iNOS) and cyclooxygenases (COXs), as well as chelation of intracellular Ca2+, drastically reduced the ethanol-induced channel opening in astrocytes. Importantly, ethanol-induced Cx43 hemichannel and Panx1 channel activity was correlated with increased levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), IL-6 in the hippocampus, as well as with profound alterations in astrocyte arbor complexity. Thus, we propose that uncontrolled opening of astrocyte hemichannels and pannexons may contribute not only to the glial dysfunction and neurotoxicity caused by adolescent alcohol consumption, but also to the pathogenesis of alcohol use disorders in the adulthood.

5.
PLoS One ; 12(5): e0177244, 2017.
Article in English | MEDLINE | ID: mdl-28472127

ABSTRACT

Teneurins are a family of highly conserved pair-rule proteins involved in morphogenesis and development of the central nervous system. Their function in adult tissues and in disease is largely unknown. Recent evidence suggests a role for dysregulated expression of Teneurins in human tumors, but systematic investigations are missing. Here, we investigated Teneurin-2 and Teneurin-4 expression in various cancer cell lines and in ovarian tumor tissues. Teneurin-2 and Teneurin-4 were expressed in most of the breast cancer cell lines tested. Teneurin-4 was also detected in ovarian cancer cell lines, and throughout ovarian tumors and normal ovary tissue. Ovarian tumors with low Teneurin-4 expression showed less differentiated phenotypes and these patients had shorter mean overall survival. Similarly, Teneurin-2 expression correlated with overall survival as well, especially in patients with serous tumors. In the various cell lines, 5-Aza-cytidine-induced changes in DNA methylation did not alter expression of Teneurin-2 and Teneurin-4, despite the existence of predicted CpG islands in both genes. Interestingly, however, we found evidence for the control of Teneurin-2 expression by the oncogenic growth factor FGF8. Furthermore, we identified multiple transcript splicing variants for Teneurin-2 and Teneurin-4, indicating complex gene expression patterns in malignant cells. Finally, downregulation of Teneurin-4 expression using siRNA caused a cell-type dependent increase in proliferation and resistance to cisplatin. Altogether, our data suggest that low Teneurin-4 expression provides a growth advantage to cancer cells and marks an undifferentiated state characterized by increased drug resistance and clinical aggressiveness. We conclude that Teneurin-2 and Teneurin-4 expression levels could be of prognostic value in ovarian cancer.


Subject(s)
Cell Differentiation/physiology , Nerve Tissue Proteins/metabolism , Ovarian Neoplasms/pathology , Survival Rate , Cell Line, Tumor , CpG Islands/genetics , DNA Methylation , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...