Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; : e0027024, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958438

ABSTRACT

The draft genome of a previously documented potential probiotic Weissella cibaria strain GM93m3 from raw goat milk in Nigeria is reported. The total genome size was 2,447,229 with 46 contigs and G+C content of 44.86%.

2.
Environ Int ; 158: 106996, 2022 01.
Article in English | MEDLINE | ID: mdl-34991256

ABSTRACT

A multi-specimen, multi-mycotoxin approach involving ultra-sensitive LC-MS/MS analysis of breast milk, complementary food and urine was applied to examine mycotoxin co-exposure in 65 infants, aged 1-18 months, in Ogun state, Nigeria. Aflatoxin M1 was detected in breast milk (4/22 (18%)), while six other classes of mycotoxins were quantified; including dihydrocitrinone (6/22 (27%); range: 14.0-59.7 ng/L) and sterigmatocystin (1/22 (5%); 1.2 ng/L) detected for the first time. Seven distinct classes of mycotoxins including aflatoxins (9/42 (21%); range: 1.0-16.2 µg/kg) and fumonisins (12/42 (29%); range: 7.9-194 µg/kg) contaminated complementary food. Mycotoxins covering seven distinct classes with diverse structures and modes of action were detected in 64/65 (99%) of the urine samples, demonstrating ubiquitous exposure. Two aflatoxin metabolites (AFM1 and AFQ1) and FB1 were detected in 6/65 (9%), 44/65 (68%) and 17/65 (26%) of urine samples, respectively. Mixtures of mycotoxin classes were common, including 22/22 (100%), 14/42 (33%) and 56/65 (86%) samples having 2-6, 2-4, or 2-6 mycotoxins present, for breast milk, complementary food and urine, respectively. Aflatoxin and/or fumonisin was detected in 4/22 (18%), 12/42 (29%) and 46/65 (71%) for breast milk, complimentary foods and urine, respectively. Furthermore, the detection frequency, median concentrations and occurrence of mixtures were typically greater in urine of non-exclusively breastfed compared to exclusively breastfed infants. The study provides novel insights into mycotoxin co-exposures in early-life. Albeit a small sample set, it highlights transition to higher levels of infant mycotoxin exposure as complementary foods are introduced, providing impetus to mitigate during this critical early-life period and encourage breastfeeding.


Subject(s)
Citrinin , Mycotoxins , Biological Monitoring , Biomarkers , Breast Feeding , Child , Chromatography, Liquid , Female , Food Contamination/analysis , Humans , Infant , Milk, Human/chemistry , Nigeria , Tandem Mass Spectrometry
3.
Toxins (Basel) ; 13(9)2021 09 09.
Article in English | MEDLINE | ID: mdl-34564639

ABSTRACT

This study characterized the health risks due to the consumption of mycotoxin-contaminated foods and assessed the consumer awareness level of mycotoxins in households in two north-central Nigerian states during the harvest and storage seasons of 2018. Twenty-six mycotoxins and 121 other microbial and plant metabolites were quantified by LC-MS/MS in 250 samples of cereals, nuts and legumes. Aflatoxins were detected in all food types (cowpea, maize, peanut and sorghum) except in millet. Aflatoxin B1 was the most prevalent mycotoxin in peanut (64%) and rice (57%), while fumonisin B1 occurred most in maize (93%) and beauvericin in sorghum (71%). The total aflatoxin concentration was highest in peanut (max: 8422 µg/kg; mean: 1281 µg/kg) and rice (max: 955 µg/kg; mean: 94 µg/kg), whereas the totals of the B-type fumonisins and citrinin were highest in maize (max: 68,204 µg/kg; mean: 2988 µg/kg) and sorghum (max: 1335 µg/kg; mean: 186 µg/kg), respectively. Citrinin levels also reached 51,195 µg/kg (mean: 2343 µg/kg) in maize. Aflatoxin and citrinin concentrations in maize were significantly (p < 0.05) higher during storage than at harvest. The estimated chronic exposures to aflatoxins, citrinin and fumonisins were high, resulting in as much as 247 new liver cancer cases/year/100,000 population and risks of nephrotoxicity and esophageal cancer, respectively. Children who consumed the foods were the most vulnerable. Mycotoxin co-occurrence was evident, which could increase the health risk of the outcomes. Awareness of mycotoxin issues was generally low among the households.


Subject(s)
Diet/adverse effects , Edible Grain/microbiology , Fabaceae/microbiology , Health Knowledge, Attitudes, Practice , Mycotoxins/administration & dosage , Nuts/microbiology , Adult , Edible Grain/chemistry , Fabaceae/chemistry , Female , Food Microbiology , Humans , Male , Nigeria , Nuts/chemistry , Risk Assessment , Young Adult
4.
MycoKeys ; 67: 95-124, 2020.
Article in English | MEDLINE | ID: mdl-32565683

ABSTRACT

Mycological investigation of various foods (mainly cowpea, groundnut, maize, rice, sorghum) and agricultural soils from two states in north-central Nigeria (Nasarawa and Niger), was conducted in order to understand the role of filamentous fungi in food contamination and public health. A total of 839 fungal isolates were recovered from 84% of the 250 food and all 30 soil samples. Preliminary identifications were made, based on macro- and micromorphological characters. Representative strains (n = 121) were studied in detail using morphology and DNA sequencing, involving genera/species-specific markers, while extrolite profiles using LC-MS/MS were obtained for a selection of strains. The representative strains grouped in seven genera (Aspergillus, Fusarium, Macrophomina, Meyerozyma, Neocosmospora, Neotestudina and Phoma). Amongst the 21 species that were isolated during this study was one novel species belonging to the Fusarium fujikuroi species complex, F. madaense sp. nov., obtained from groundnut and sorghum in Nasarawa state. The examined strains produced diverse extrolites, including several uncommon compounds: averantinmethylether in A. aflatoxiformans; aspergillimide in A. flavus; heptelidic acid in A. austwickii; desoxypaxillin, kotanin A and paspalitrems (A and B) in A. aflatoxiformans, A. austwickii and A. cerealis; aurasperon C, dimethylsulochrin, fellutanine A, methylorsellinic acid, nigragillin and pyrophen in A. brunneoviolaceus; cyclosporins (A, B, C and H) in A. niger; methylorsellinic acid, pyrophen and secalonic acid in A. piperis; aspulvinone E, fonsecin, kojic acid, kotanin A, malformin C, pyranonigrin and pyrophen in A. vadensis; and all compounds in F. madaense sp. nov., Meyerozyma, Neocosmospora and Neotestudina. This study provides snapshot data for prediction of food contamination and fungal biodiversity exploitation.

5.
Front Microbiol ; 11: 615, 2020.
Article in English | MEDLINE | ID: mdl-32328050

ABSTRACT

Low moisture content ready-to-eat foods vended in Nigerian markets could be pre-packaged or packaged at point of sale. These foods are widely and frequently consumed across Nigeria as quick foods. Despite their importance in the daily diets of Nigerians, a comprehensive study on the diversity of fungi, fungal metabolite production potential, and mycotoxin contamination in the foods has not yet been reported. Therefore, this study assessed the diversity of fungi in 70 samples of low moisture content ready-to-eat foods [cheese balls, garri (cassava-based), granola (a mix of cereals and nuts) and popcorn] in Nigeria by applying a polyphasic approach including morphological examination, genera/species-specific gene marker sequencing and secondary metabolite profiling of fungal cultures. Additionally, mycotoxin levels in the foods were determined by LC-MS/MS. Fungal strains (n = 148) were recovered only from garri. Molecular analysis of 107 representative isolates revealed 27 species belonging to 12 genera: Acremonium, Allophoma, Aspergillus, Cladosporium, Fusarium, Microdochium, Penicillium, Sarocladium, Talaromyces, and Tolypocladium in the Ascomycota, and Fomitopsis and Trametes in the Basidiomycota. To the best of our knowledge Allophoma, Fomitopsis, Microdochium, Tolypocladium, and Trametes are reported in African food for the first time. A total of 21 uncommon metabolites were found in cultures of the following species: andrastin A and sporogen AO1 in Aspergillus flavus; paspalin in A. brunneoviolaceus; lecanoic acid and rugulusovin in A. sydowii; sclerotin A in P. citrinum and Talaromyces siamensis; barceloneic acid, festuclavine, fumigaclavine, isochromophilons (IV, VI, and IX), ochrephilone, sclerotioramin, and sclerotiorin in P. sclerotium; epoxyagroclavine, infectopyron, methylorsellinic acid and trichodermamide C in P. steckii; moniliformin and sporogen AO1 in P. copticola; and aminodimethyloctadecanol in Tolypocladium. Twenty-four mycotoxins in addition to other 73 fungal and plant toxins were quantified in the foods. In garri, cheeseballs, popcorn and granola were 1, 6, 12, and 23 mycotoxins detected, respectively. Deoxynivalenol, fumonisins, moniliformin, aflatoxins and citrinin contaminated 37, 31, 31, 20, and 14% of all food samples, respectively. Overall, citrinin had the highest mean concentration of 1481 µg/kg in the foods, suggesting high citrinin exposures in the Nigerian populace. Fungal and mycotoxin contamination of the foods depend on pre-food and post-food processing practices.

6.
Mycotoxin Res ; 35(2): 149-155, 2019 May.
Article in English | MEDLINE | ID: mdl-30484071

ABSTRACT

Mycotoxins are toxic secondary fungal metabolites that can negatively affect animal productivity when ingested through feed. In order to assess mycotoxin contamination of poultry feed and feed ingredients vis-a-vis source tracking of feed contamination in Nigeria, 102 samples of feed (n = 30) and feed ingredients (n = 72) were collected from in-house mills of poultry farms across 12 states of Nigeria and analyzed for multiple mycotoxins using LC/MS-MS. One hundred and forty microbial metabolites were detected in the feed and feed ingredients. The most frequent mycotoxin in the feed was fumonisin B1, occurring in 97% of the samples at mean concentration of 1014 µg kg-1. AFB1 occurred in 83% of the feed samples at mean concentration of 74 µg kg-1 and in all feed ingredients except fish meal and other cereals (millet and rice). Feed samples analyzed in this study were contaminated with at least four mycotoxins: aflatoxins and fumonisin co-occurring in 80% of the samples. Peanut cake and maize contributed the most to the levels of aflatoxin and fumonisin, respectively, in the feed. Consequently, there is a need to explore other cereal- and protein-based ingredients for compounding feeds in order to reduce the risk associated with high mycotoxin (e.g. aflatoxin) intake in poultry.


Subject(s)
Animal Feed/analysis , Food Contamination/analysis , Mycotoxins/analysis , Poisons/analysis , Animals , Chromatography, Liquid , Nigeria , Poultry , Tandem Mass Spectrometry
7.
Food Chem Toxicol ; 121: 37-50, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30118820

ABSTRACT

This study assessed, for the first time, the mycotoxicological risks from consumption of complementary foods by infants and young children in Nigeria. Molds belonging to Aspergillus aculeatinus, A. flavus, A. luchuensis, A. tubingensis, A. welwitschiae and Geotrichum candidum were recovered from the complementary foods. Twenty-eight major mycotoxins and derivatives, and another 109 microbial metabolites including chloramphenicol (a bacterial metabolite), were quantified in 137 food samples by LC-MS/MS. Aflatoxins and fumonisins co-contaminated 42% of the cereal- and nut-based food samples, at mean concentrations exceeding the EU limits of 0.1 and 200 µg/kg set for processed baby foods by 300 and six times, respectively. Milk contained mainly beauvericin, chloramphenicol and zearalenone. The trichothecenes, T-2 and HT-2 toxins, were quantified only in infant formula and at levels three times above the EU indicative level of 15 µg/kg for baby food. Chronic exposure estimate to carcinogenic aflatoxin was high causing low margin of exposure (MOE). Exposures to other mycotoxins either exceeded the established reference values by several fold or revealed low MOEs, pointing to important health risks in this highly vulnerable population. The observed mycotoxin mixtures may further increase risks of adverse health outcomes of exposure; this warrants urgent advocacy and regulatory interventions.


Subject(s)
Dietary Exposure , Food Contamination/analysis , Infant Food/analysis , Mycotoxins/analysis , Mycotoxins/toxicity , Child, Preschool , Chromatography, Liquid , Female , Humans , Infant , Limit of Detection , Male , Mycotoxins/standards , Nigeria , Reference Standards , Risk Assessment , Seasons , Tandem Mass Spectrometry , Uncertainty , Vulnerable Populations
8.
Article in English | MEDLINE | ID: mdl-29843566

ABSTRACT

Aflatoxins are a major class of fungal toxins that have food safety importance due to their economic and health impacts. This pilot aflatoxin exposure biomonitoring study on 84 individuals was conducted in a rural (Ilumafon) and a semi-urban community (Ilishan Remo) of Ogun state, Nigeria, to compare aflatoxin exposures among the two population cohorts. First morning urine samples were obtained from the participants, and the urinary aflatoxin M1 (AFM1) levels were measured by a quantitative Helica Biosystems Inc. ELISA kit assay. About 99% (83 out of 84) of the urine samples had detectable AFM1 levels in the range of 0.06 to 0.51 ng mL-1 (median: 0.27 ng mL-1). The mean urinary AFM1 levels were significantly (p = 0.001) higher in the semi-urban population (0.31 ± 0.09 ng mL-1) compared to the rural population (0.24 ± 0.07 ng mL-1). There were, however, no significant differences in mean urinary AFM1 levels of males and females, and among children, adolescents and adults. This study indicates high aflatoxin exposure to the extent of public health concerns in the studied populations. Thus, more efforts are required for aflatoxin exposure monitoring and control in high-risk regions.


Subject(s)
Aflatoxin M1/urine , Environmental Monitoring , Food Contamination/analysis , Adolescent , Adult , Aged , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Food Safety , Humans , Male , Middle Aged , Nigeria , Pilot Projects , Rural Population , Urban Population , Young Adult
9.
Compr Rev Food Sci Food Saf ; 17(2): 334-351, 2018 Mar.
Article in English | MEDLINE | ID: mdl-33350081

ABSTRACT

African traditional beverages are widely consumed food-grade liquids processed from single or mixed grains (mostly cereals) by simple food processing techniques, of which fermentation tops the list. These beverages are very diverse in composition and nutritional value and are specific to different cultures and countries. The grains from which home-processed traditional beverages are made across Africa are often heavily contaminated with multiple mycotoxins due to poor agricultural, handling, and storage practices that characterize the region. In the literature, there are many reports on the spectrum and quantities of mycotoxins in crops utilized in traditional beverage processing, however, few studies have analyzed mycotoxins in the beverages themselves. The available reports on mycotoxins in African traditional beverages are mainly centered on the finished products with little information on the process chain (raw material to final product), fate of the different mycotoxins during processing, and exposure estimates for consumers. Regulations targeting these local beverages are not in place despite the heavy occurrence of mycotoxins in their raw materials and the high consumption levels of the products in many homes. This paper therefore comprehensively discusses for the 1st time the available data on the wide variety of African traditional beverages, the mycotoxins that contaminate the beverages and their raw materials, exposure estimates, and possible consequent effects. Mycotoxin control options and future directions for mycotoxin research in beverage production are also highlighted.

10.
Front Microbiol ; 9: 3282, 2018.
Article in English | MEDLINE | ID: mdl-30687270

ABSTRACT

Kunu is a traditional fermented single or mixed cereals-based beverage popularly consumed in many parts of West Africa. Presently, the bacterial community and mycotoxin contamination profiles during processing of various kunu formulations have never been comprehensively studied. This study, therefore, investigated the bacterial community and multi-mycotoxin dynamics during the processing of three kunu formulations using high-throughput sequence analysis of partial 16S rRNA gene (hypervariable V3-V4 region) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. A total of 2,303 operational taxonomic units (OTUs) were obtained across six processing stages in all three kunu formulations. Principal coordinate analysis biplots of the Bray-Curtis dissimilarity between bacterial communities revealed the combined influences of formulations and processing steps. Taxonomically, OTUs spanned 13 phyla and 486 genera. Firmicutes (phylum) dominated (relative abundance) most of the processing stages, while Proteobacteria dominated the rest of the stages. Lactobacillus (genus taxa level) dominated most processing stages and the final product (kunu) of two formulations, whereas Clostridium sensu stricto (cluster 1) dominated kunu of one formulation, constituting a novel observation. We further identified Acetobacter, Propionibacterium, Gluconacetobacter, and Gluconobacter previously not associated with kunu processing. Shared phylotypes between all communities were dominated by lactic acid bacteria including species of Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Other shared phylotypes included notable acetic acid bacteria and potential human enteric pathogens. Ten mycotoxins [3-Nitropropionic acid, aflatoxicol, aflatoxin B1 (AFB1), AFB2, AFM1, alternariol (AOH), alternariolmethylether (AME), beauvericin (BEAU), citrinin, and moniliformin] were quantified at varying concentrations in ingredients for kunu processing. Except for AOH, AME, and BEAU that were retained at minimal levels of < 2 µg/kg in the final product, most mycotoxins in the ingredients were not detectable after processing. In particular, mycotoxin levels were substantially reduced by fermentation, although simple dilution and sieving also contributed to mycotoxin reduction. This study reinforces the perception of kunu as a rich source of bacteria with beneficial attributes to consumer health, and provides in-depth understanding of the microbiology of kunu processing, as well as information on mycotoxin contamination and reduction during this process. These findings may aid the development of starter culture technology for safe and quality kunu production.

11.
Int J Food Microbiol ; 251: 24-32, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28380344

ABSTRACT

The fungal and multi-mycotoxin profiles of groundnuts sold in domestic markets in Nigeria as well as the associated risk to consumers were assessed in the present study. Four hundred fungal isolates representing mainly Aspergillus [58.6%: Aspergillus section Flavi (37.1%) and A. niger-clade (21.5%)], Penicillium (40.9%) and Fusarium (0.5%) were isolated from 82 (97.6%, n=84) groundnut samples collected from four agro-ecological zones (AEZs) of Nigeria. The incidence of aflatoxin-producing A. flavus isolates (71%) was significantly (p<0.05) higher in the groundnuts than that of the non-aflatoxigenic isolates (29%). Fifty-four fungal metabolites [including aflatoxins (AFB1, AFB2, AFG1, AFG2 and AFM1), beauvericin (BEAU), cyclopiazonic acid (CPA), moniliformin, nivalenol and ochratoxin A] and four bacterial metabolites were detected in the groundnuts by liquid chromatography tandem mass spectrometry. Aflatoxins (39%; max: 2076µg/kg; mean: 216µg/kg) were detected in more samples than any other mycotoxin. About 25, 23 and 14% of the samples respectively were above the 2µg/kg AFB1, 4 and 20µg/kg total aflatoxin limits of the European Union and US FDA respectively. The mean margins of exposure of AFB1 and total aflatoxins for adult consumers were 1665 and 908, respectively, while mean estimated daily intake values for infants, children and adults were <0.1% for BEAU and 4% for CPA. Consumers of mycotoxin contaminated groundnuts in Nigeria may therefore be at a risk of liver cancer in addition to other combinatory effects of mycotoxin/metabolite cocktails. There is need for increased targeted interventions in the groundnut value chain in Nigeria for public health benefits.


Subject(s)
Arachis/chemistry , Arachis/microbiology , Aspergillus flavus/isolation & purification , Fusarium/isolation & purification , Mycotoxins/analysis , Nuts/chemistry , Nuts/microbiology , Penicillium/isolation & purification , Aflatoxins/analysis , Aspergillus flavus/metabolism , Chromatography, Liquid , Cyclobutanes/analysis , Depsipeptides/analysis , Fusarium/metabolism , Humans , Indoles/analysis , Infant , Liver Neoplasms/epidemiology , Nigeria/epidemiology , Ochratoxins/analysis , Penicillium/metabolism , Risk Assessment , Tandem Mass Spectrometry , Trichothecenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...