Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 83: 189-198, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30366136

ABSTRACT

Collagen scaffolds are widely used in a range of tissue engineering applications, both in vitro and in vivo, where their permeability to fluid flow greatly affects their mechanical and biological functionality. This paper reports new insights into the interrelationships between permeability, scaffold structure, fluid pressure and deformation in collagen scaffolds, focussing in particular on the degree of closure and the alignment of the pores. Isotropic and aligned scaffolds of different occlusivity were produced by ice templating, and were characterised in terms of their structure and mechanical properties. Permeability studies were conducted using two experimental set-ups to cover a wide range of applied fluid pressures. The permeability was found to be constant at low pressures for a given scaffold with more open structures and aligned structures being more permeable. The deformation of scaffolds under high pressure led to a decrease in permeability. The aligned structures were more responsive to deformation than their isotropic equivalents with their permeability falling more quickly at low strain. For isotropic samples, a broad (1 - ɛ)2 dependence for permeability was observed with the constant of proportionality varying with collagen fraction as the starting structures became more occluded. Aligned scaffolds did not follow the same behaviour, with the pores apparently closing more quickly in response to early deformation. These results highlight the importance of scaffold structure in determining permeability to interstitial fluid, and provide an understanding of scaffold behaviour within the complex mechanical environment of the body. STATEMENT OF SIGNIFICANCE: Collagen scaffolds are widely used in tissue engineering applications, for instance to contribute with wound healing. Their permeability to fluid flow, such as water and blood, is important to ensure they perform efficiently when inside the body. The present study reports new insights into the relationships between permeability, scaffold structure, fluid pressure and deformation in collagen scaffolds. It presents in particular the experimental setups used to measure these properties and the result of comparisons between collagen scaffolds with different structures: aligned and isotropic (non-aligned). It indicates quantitative differences in terms of permeability, and the effects of compression on such permeability. The results contribute to the development and understanding of collagen scaffolds and their applications.


Subject(s)
Collagen/chemistry , Ice , Models, Chemical , Tissue Scaffolds/chemistry , Permeability , Porosity
2.
AIP Adv ; 8(10): 105006, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30345162

ABSTRACT

The transport properties of hydrogels largely affect their performance in biomedical applications ranging from cell culture scaffolds to drug delivery systems. Solutes can move through the polymer mesh as a result of concentration gradients in the interstitial fluid or pressure gradients that move the fluid and solutes simultaneously. The relationship between the two modalities of transport in hydrogels can provide insight for the design of materials that can function effectively in the dynamic conditions experienced in vitro and in vivo, yet this correlation has not been previously elucidated. Here, fluorescence recovery after photobleaching (FRAP) is used to measure the diffusivity of dextran molecules of different size within polyethylene glycol hydrogels. Spherical indentation analyzed in a poroelastic framework is used to measure the permeability to fluid flow of the same hydrogels. It is found that while the diffusivity varies with exp(ξ -2), where ξ is the mesh size of the hydrogels, it also varies with exp(k -1), where k is the intrinsic permeability. For the same hydrogel structure, diffusive transport is affected by the solute size, while convective transport is unaffected. As spherical indentation is a reliable, quick and non-destructive testing method for hydrated soft materials, the relationship provides the means to faster assessment of the transport properties of hydrogels and, ultimately, of their effective use in biomedical applications.

3.
Sci Rep ; 7: 42948, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230077

ABSTRACT

Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.


Subject(s)
Cartilage, Articular/physiology , Cryogels/chemistry , Acrylic Resins/chemistry , Compressive Strength , Elastic Modulus , Hydrogels/chemistry , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Microscopy, Confocal , Permeability , Polyelectrolytes/chemistry , Polyvinyl Alcohol/chemistry , Porosity , Static Electricity , Temperature
4.
J Mech Behav Biomed Mater ; 65: 842-848, 2017 01.
Article in English | MEDLINE | ID: mdl-27810730

ABSTRACT

Severe degeneration of the intervertebral disc has an immensely debilitating effect on quality of life that has become a serious health and economic burden throughout the world. The disc plays an integral role in biomechanical movement and support within the spine. The emergence of tissue engineering endeavours to restore the structural characteristics and functionality of the native tissue. Hydrogels have been widely investigated as a candidate for regeneration of the gelatinous nucleus pulposus due to its architectural resemblance and fluid retention characteristics. However, hydrogels are often limited due to small compressive stiffness and tear resistance, leading to extrusion complications. Reinforcement of the hydrogel network using polymeric scaffolds may address these issues of inadequate mechanical properties and implant instability. This study investigates the potential of a carrageenan gel-infused polycaprolactone scaffold for nucleus pulposus tissue engineering. Mechanical properties were characterised using viscoelastic and poroelastic frameworks via microindentation. The incorporation of polymeric reinforcement within the gels increased material stiffness to that comparable to the native nucleus pulposus, however permeability was significantly greater than native values. A preliminary cell evaluation culturing NIH 3T3s over 21 days suggested the incorporation of polymeric networks also enhanced cellular proliferation compared to gels alone.


Subject(s)
Hydrogels/chemistry , Intervertebral Disc Degeneration , Tissue Engineering , Tissue Scaffolds , Animals , Biomechanical Phenomena , Carrageenan/chemistry , Humans , Intervertebral Disc , Mice , NIH 3T3 Cells , Nucleus Pulposus/physiology , Polyesters/chemistry , Quality of Life , Regeneration
5.
J Biomech ; 49(16): 3780-3787, 2016 12 08.
Article in English | MEDLINE | ID: mdl-28029359

ABSTRACT

Placental oxygen transport takes place at the final branches of the villous tree and is dictated by the relative arrangement of the maternal and fetal circulations. Modeling techniques have failed to accurately assess the structure-function relationship in the terminal villi due to the geometrical complexity. Three-dimensional blood flow and oxygen transport was modeled in four terminal villi reconstructed from confocal image stacks. The blood flow was analyzed along the center lines of capillary segments and the effect of the variability in capillary diameter, tortuosity and branching was investigated. Additionally, a validation study was performed to corroborate the simulation results. The results show how capillary variations impact motion of the fetal blood, and how their bends and dilatations can decelerate the flow by up to 80%. Vortical flow is also demonstrated not to develop in the fetal capillaries. The different geometries are shown to dictate the transport of gases with differences of over 100% in the oxygen flux between samples. Capillary variations are key for efficient oxygen uptake by the fetus; they allow the blood to decelerate where the villous membrane is thinnest allowing for a better oxygenation, but also by reducing the vessel diameter they carry the oxygenated blood away fast. The methodology employed herein could become a platform to simulate complicated in-vivo and in-vitro scenarios of pregnancy complications.


Subject(s)
Chorionic Villi/physiology , Models, Biological , Capillaries/physiology , Chorionic Villi/blood supply , Computer Simulation , Female , Fetus/blood supply , Humans , Oxygen/physiology , Pregnancy , Regional Blood Flow
6.
Acta Biomater ; 41: 193-203, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27255358

ABSTRACT

UNLABELLED: Freeze-dried scaffolds provide regeneration templates for a wide range of tissues, due to their flexibility in physical and biological properties. Control of structure is crucial for tuning such properties, and therefore scaffold functionality. However, the common approach of modeling these scaffolds as open-cell foams does not fully account for their structural complexity. Here, the validity of the open-cell model is examined across a range of physical characteristics, rigorously linking morphology to hydration and mechanical properties. Collagen scaffolds with systematic changes in relative density were characterized using Scanning Electron Microscopy, X-ray Micro-Computed Tomography and spherical indentation analyzed in a time-dependent poroelastic framework. Morphologically, all scaffolds were mid-way between the open- and closed-cell models, approaching the closed-cell model as relative density increased. Although pore size remained constant, transport pathway diameter decreased. Larger collagen fractions also produced greater volume swelling on hydration, although the change in pore diameter was constant, and relatively small at ∼6%. Mechanically, the dry and hydrated scaffold moduli varied quadratically with relative density, as expected of open-cell materials. However, the increasing pore wall closure was found to determine the time-dependent nature of the hydrated scaffold response, with a decrease in permeability producing increasingly elastic rather than viscoelastic behavior. These results demonstrate that characterizing the deviation from the open-cell model is vital to gain a full understanding of scaffold biophysical properties, and provide a template for structural studies of other freeze-dried biomaterials. STATEMENT OF SIGNIFICANCE: Freeze-dried collagen sponges are three-dimensional microporous scaffolds that have been used for a number of exploratory tissue engineering applications. The characterization of the structure-properties relationships of these scaffolds is necessary to understand their biophysical behavior in vivo. In this work, the relationship between morphology and physical properties in the dry and hydrated states was investigated across a range of solid concentrations in the scaffolds. The quantitative results provided can aid the design of scaffolds with a target trade-off between mechanical properties and structural features important for their biological activity.


Subject(s)
Collagen/chemistry , Freeze Drying/methods , Rheology , Tissue Scaffolds/chemistry , Water/chemistry , Animals , Biomechanical Phenomena , Cattle , Collagen/ultrastructure , Elastic Modulus , Permeability , Porosity , X-Ray Microtomography
7.
Horm Metab Res ; 48(11): 726-736, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27077459

ABSTRACT

The microenvironment, which can be considered the sum of all the components and conditions surrounding a particular cell, is critical to moderating cellular behavior. In bone, interactions with the microenvironment can influence osteogenic differentiation, and subsequent extracellular matrix deposition, mineralization, and bone growth. Beyond regenerative medicine purposes, tissue engineering tools, namely cell-scaffold constructs, can be used as models of the bone microenvironment. Hydrogels, which are hydrophilic polymer networks, are popularly used for cell culture constructs due to their substantial water content and their ability to be tailored for specific applications. As synthetic microenvironments, a level of control can be exerted on the hydrogel structure and material properties, such that individual contributions from the scaffold on cellular behavior can be observed. Both biochemical and mechanical stimuli have been shown to modulate cellular behaviors. Hydrogels can be modified to present cell-interactive ligands, include osteoinductive moieties, vary mechanical properties, and be subject to external mechanical stimulation, all of which have been shown to affect osteogenic differentiation. Following "bottom-up" fabrication methods, levels of complexity can be introduced to hydrogel systems, such that the synergistic effects of multiple osteogenic cues can be observed. This review explores the utility of hydrogel scaffolds as synthetic bone microenvironments to observe both individual and synergistic effects from biochemical and mechanical signals on osteogenic differentiation. Ultimately, a better understanding of how material properties can influence cellular behavior will better inform design of tissue engineering scaffolds, not just for studying cell behavior, but also for regenerative medicine purposes.


Subject(s)
Bone and Bones/cytology , Cell Differentiation , Cellular Microenvironment , Hydrogels/chemistry , Osteogenesis/physiology , Tissue Engineering , Animals , Humans , Tissue Scaffolds
8.
Article in English | MEDLINE | ID: mdl-24111273

ABSTRACT

A severe shortage of donor cornea is now an international crisis in public health. Substitutes for donor tissue need to be developed to meet the increasing demand for corneal transplantation. Current attempts in designing scaffolds for corneal tissue regeneration involve utilization of expensive materials. Yet, these corneal scaffolds still lack the highly-organized fibrous structure that functions as a load-bearing component in the native tissue. This work shows that transparent nanofiber-reinforced hydrogels could be developed from cheap, non-immunogenic and readily available natural polymers to mimic the cornea's microstructure. Electrospinning was employed to produce gelatin nanofibers, which were then infiltrated with alginate hydrogels. Introducing electrospun nanofibers into hydrogels improved their mechanical properties by nearly one order of magnitude, yielding mechanically robust composites. Such nanofiber-reinforced hydrogels could serve as alternatives to donor tissue for corneal transplantation.


Subject(s)
Alginates/chemistry , Bioprosthesis , Cornea , Gelatin/chemistry , Hydrogels/chemistry , Nanofibers/chemistry , Animals , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Tissue Engineering/methods
9.
Acta Biomater ; 9(7): 7326-34, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23470550

ABSTRACT

Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness.


Subject(s)
Gelatin/chemistry , Nanofibers/chemistry , Nanofibers/ultrastructure , Polyesters/chemistry , Tissue Scaffolds , Elastic Modulus , Electrochemistry , Equipment Design , Equipment Failure Analysis , Hardness , Materials Testing , Rotation , Tensile Strength
10.
J Mech Behav Biomed Mater ; 12: 74-82, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22659368

ABSTRACT

Fibrous collagenous networks are not only stiff but also tough, due to their complex microstructures. This stiff yet tough behavior is desirable for both medical and military applications but it is difficult to reproduce in engineering materials. While the nonlinear hyperelastic behavior of fibrous networks has been extensively studied, the understanding of toughness is still incomplete. Here, we identify a microstructure mimicking the branched bundles of a natural type I collagen network, in which partially cross-linked long fibers give rise to novel combinations of stiffness and toughness. Finite element analysis shows that the stiffness of fully cross-linked fibrous networks is amplified by increasing the fibril length and cross-link density. However, a trade-off of such stiff networks is reduced toughness. By having partially cross-linked networks with long fibrils, the networks have comparable stiffness and improved toughness as compared to the fully cross-linked networks. Further, the partially cross-linked networks avoid the formation of kinks, which cause fibril rupture during deformation. As a result, the branching allows the networks to have stiff yet tough behavior.


Subject(s)
Collagen Type I/chemistry , Collagen/chemistry , Biocompatible Materials/chemistry , Biomechanical Phenomena , Computer Simulation , Cross-Linking Reagents/chemistry , Elasticity , Finite Element Analysis , Humans , Materials Testing , Models, Chemical , Models, Statistical , Pressure , Shear Strength , Software , Stress, Mechanical
11.
J Mech Behav Biomed Mater ; 2(4): 339-47, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19627840

ABSTRACT

The fibrocartilagenous knee menisci are situated between the femoral condyles and tibia plateau and are primarily anchored to the tibia by means of four attachments at the anterior and posterior horns. Strong fixation of meniscal attachments to the tibial plateau provide resistance to extruding forces of the meniscal body, allowing the menisci to assist in load transmission from the femur to the tibia. Clinically, tears and ruptures of the meniscal attachments and insertion to bone are rare. While it has been suggested that the success of a meniscal replacement is dependent on several factors, one of which is the secure fixation and firm attachment of the replacement to the tibial plateau, little is known about the material properties of meniscal attachments and the transition in material properties from the meniscus to subchondral bone. The objective of this study was to use nanoindentation to investigate the transition from meniscal attachment into underlying subchondral bone through uncalcified and calcified fibrocartilage. Nanoindentation tests were performed on both the anterior and posterior meniscal insertions to measure the instantaneous elastic modulus and elastic modulus at infinite time. The elastic moduli were found to increase in a bi-linear fashion from the external ligamentous attachment to the subchondral bone. The elastic moduli for the anterior attachments were consistently larger than those for the matching posterior attachments at similar indentation locations. These results show that there is a gradient of stiffness from the superficial zones of the insertion close to the ligamentous attachment into the deeper zones of the bone. This information will be useful in the continued development of successful meniscal replacements and understanding of fixation of the replacements to the tibial plateau.


Subject(s)
Menisci, Tibial , Nanotechnology , Tibia , Biomechanical Phenomena , Calcification, Physiologic , Elastic Modulus , Hardness Tests , Humans , Male , Menisci, Tibial/physiology , Middle Aged , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...