Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 59(2): 758-763, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35024861

ABSTRACT

The development of insecticide resistance in different species of mosquitoes to Pyrethroids is a major challenge for vector-borne diseases transmitted by mosquitoes. Failure of Pyrethroids in control of mosquitoes would impact negatively on the gains recorded in control of mosquito-borne diseases in previous years. In anticipation of a country-wide deployment of Pyrethroid-treated nets for control of mosquito-borne diseases in Nigeria, this study assessed susceptibility of Culex quinquefasciatus Say. (Diptera: Culicidae) to Pyrethroids in Owhelogbo, Ejeme and Oria-Abraka communities in Delta State, Niger-Delta, Nigeria. Three to five day old Cx. quinquefasciatus were exposed to Deltamethrin (0.05%), Permethrin (0.75%), and Alphacypermethrin (0.05%) using World Health Organization bioassay method. Polymerase chain reaction (PCR) was employed in characterization of species and knockdown mutation. Results revealed that Cx. quinquefasciatus were generally susceptible (98-100%) to Deltamethrin, Permethrin, and Alphacypermethrin in the three communities with the exception of Owhelogbo where resistance to Deltamethrin (97%) was suspected. Knockdown time to Deltamethrin (11.51, 11.23, and 12.68 min), Permethrin (28.75, 13.26, and 14.49 min), and Alphacypermethrin (15.07, 12.50, and 13.03 min) were considerably low for Owhelogbo, Ejeme, and Oria-Abraka Cx. quinquefasciatus populations, respectively. Species identification result showed that all amplified samples were Cx. quinquefasciatus; however, no kdr allele was found in the three populations. Deployment of pyrethroid-treated nets for control of mosquito-borne diseases in Niger-Delta region of Nigeria is capable of reducing burden of diseases transmitted by Cx. quinquefasciatus as well as addressing nuisance value of the vector; however, caution must be entertained so as not to increase selection pressure thereby aiding resistance development.


Subject(s)
Anopheles , Culex , Insecticides , Pyrethrins , Animals , Culex/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Vectors/genetics , Niger , Nigeria , Permethrin/pharmacology , Pyrethrins/pharmacology
2.
J Med Entomol ; 56(3): 817-821, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30753574

ABSTRACT

Pyrethroids and DDT are key insecticides in the control of malaria, yellow fever, and lymphatic filariasis vectors. Knockdown and metabolic resistance mechanisms have been proven to be important in determining the efficacy of insecticides. Here we investigated cytochrome P450 as a resistance mechanism in Anopheles gambiae Giles and Culex quinquefasciatus Say exposed to deltamethrin and DDT. Two- to three-days-old adult female mosquitoes were used for insecticide exposures and PBO synergistic assays using WHO standard guidelines, kits and test papers (DDT 4%, deltamethrin 0.05%, and PBO 4%). Polymerase chain reaction (PCR) assays were used for the identification of the species and for characterization of the kdr allele. Mortality at 24 h post-exposure was 18 and 17% in An. gambiae s.s. exposed to DDT and deltamethrin, respectively; 1 and 5% in Cx. quinquefasciatus exposed to DDT and deltamethrin respectively. Significant (P < 0.01) levels of susceptibility was recorded in mosquitoes pre-exposed to PBO, as KDT50 and 24 h of exposure ranged from 37.6 min to 663.4 min and 27 to 80%, respectively. Presence of a knockdown resistance allele was recorded in An. gambiae s.s., 22.5% for homozygote resistance and 7.5% for heterozygotes, while Cx. quinquefasciatus populations showed no kdr allele despite the high level of resistance to DDT and deltamethrin. Findings from this study indicated that cytochrome P450 mono-oxygenase expression is highly implicated in the resistance phenotype to DDT and pyrethroids in An. gambiae and Cx. quinquefasciatus in the study area.


Subject(s)
Anopheles/drug effects , Culex/drug effects , Cytochrome P-450 Enzyme System/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Animals , Anopheles/enzymology , Anopheles/genetics , Culex/enzymology , Culex/genetics , DDT/pharmacology , Nigeria , Nitriles/pharmacology , Phenotype , Pyrethrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...