Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 12(1): 186-203, 2022 01.
Article in English | MEDLINE | ID: mdl-34417224

ABSTRACT

Mutations in epigenetic regulators are common in relapsed pediatric acute lymphoblastic leukemia (ALL). Here, we uncovered the mechanism underlying the relapse of ALL driven by an activating mutation of the NSD2 histone methyltransferase (p.E1099K). Using high-throughput drug screening, we found that NSD2-mutant cells were specifically resistant to glucocorticoids. Correction of this mutation restored glucocorticoid sensitivity. The transcriptional response to glucocorticoids was blocked in NSD2-mutant cells due to depressed glucocorticoid receptor (GR) levels and the failure of glucocorticoids to autoactivate GR expression. Although H3K27me3 was globally decreased by NSD2 p.E1099K, H3K27me3 accumulated at the NR3C1 (GR) promoter. Pretreatment of NSD2 p.E1099K cell lines and patient-derived xenograft samples with PRC2 inhibitors reversed glucocorticoid resistance in vitro and in vivo. PRC2 inhibitors restored NR3C1 autoactivation by glucocorticoids, increasing GR levels and allowing GR binding and activation of proapoptotic genes. These findings suggest a new therapeutic approach to relapsed ALL associated with NSD2 mutation. SIGNIFICANCE: NSD2 histone methyltransferase mutations observed in relapsed pediatric ALL drove glucocorticoid resistance by repression of the GR and abrogation of GR gene autoactivation due to accumulation of K3K27me3 at its promoter. Pretreatment with PRC2 inhibitors reversed resistance, suggesting a new therapeutic approach to these patients with ALL.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Enzyme Inhibitors/therapeutic use , Glucocorticoids/therapeutic use , Histone Methyltransferases/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Repressor Proteins/genetics , Cell Line, Tumor/drug effects , Cell Survival , Child , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , Female , Glucocorticoids/pharmacology , Humans , Male , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
2.
Cancer Discov ; 9(10): 1438-1451, 2019 10.
Article in English | MEDLINE | ID: mdl-31337617

ABSTRACT

By examination of the cancer genomics database, we identified a new set of mutations in core histones that frequently recur in cancer patient samples and are predicted to disrupt nucleosome stability. In support of this idea, we characterized a glutamate to lysine mutation of histone H2B at amino acid 76 (H2B-E76K), found particularly in bladder and head and neck cancers, that disrupts the interaction between H2B and H4. Although H2B-E76K forms dimers with H2A, it does not form stable histone octamers with H3 and H4 in vitro, and when reconstituted with DNA forms unstable nucleosomes with increased sensitivity to nuclease. Expression of the equivalent H2B mutant in yeast restricted growth at high temperature and led to defective nucleosome-mediated gene repression. Significantly, H2B-E76K expression in the normal mammary epithelial cell line MCF10A increased cellular proliferation, cooperated with mutant PIK3CA to promote colony formation, and caused a significant drift in gene expression and fundamental changes in chromatin accessibility, particularly at gene regulatory elements. Taken together, these data demonstrate that mutations in the globular domains of core histones may give rise to an oncogenic program due to nucleosome dysfunction and deregulation of gene expression. SIGNIFICANCE: Mutations in the core histones frequently occur in cancer and represent a new mechanism of epigenetic dysfunction that involves destabilization of the nucleosome, deregulation of chromatin accessibility, and alteration of gene expression to drive cellular transformation.See related commentary by Sarthy and Henikoff, p. 1346.This article is highlighted in the In This Issue feature, p. 1325.


Subject(s)
Histones/genetics , Mutation , Neoplasms/genetics , Oncogenes , Alleles , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Gene Expression , Gene Expression Profiling , Histones/chemistry , Histones/metabolism , Humans , Mutation, Missense , Neoplasms/metabolism , Nucleosomes/metabolism , Protein Multimerization , Yeasts/genetics , Yeasts/metabolism
3.
Oncogene ; 38(5): 671-686, 2019 01.
Article in English | MEDLINE | ID: mdl-30171259

ABSTRACT

NSD2, a histone methyltransferase specific for methylation of histone 3 lysine 36 (H3K36), exhibits a glutamic acid to lysine mutation at residue 1099 (E1099K) in childhood acute lymphocytic leukemia (ALL), and cells harboring this mutation can become the predominant clone in relapsing disease. We studied the effects of this mutant enzyme in silico, in vitro, and in vivo using gene edited cell lines. The E1099K mutation altered enzyme/substrate binding and enhanced the rate of H3K36 methylation. As a result, cell lines harboring E1099K exhibit increased H3K36 dimethylation and reduced H3K27 trimethylation, particularly on nucleosomes containing histone H3.1. Mutant NSD2 cells exhibit reduced apoptosis and enhanced proliferation, clonogenicity, adhesion, and migration. In mouse xenografts, mutant NSD2 cells are more lethal and brain invasive than wildtype cells. Transcriptional profiling demonstrates that mutant NSD2 aberrantly activates factors commonly associated with neural and stromal lineages in addition to signaling and adhesion genes. Identification of these pathways provides new avenues for therapeutic interventions in NSD2 dysregulated malignancies.


Subject(s)
Cellular Reprogramming , Histone-Lysine N-Methyltransferase , Mutation, Missense , Neoplasm Proteins , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Repressor Proteins , Amino Acid Substitution , HeLa Cells , Heterografts , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism
4.
J Med Chem ; 61(19): 8504-8535, 2018 10 11.
Article in English | MEDLINE | ID: mdl-29718665

ABSTRACT

Small-molecule (SM) leads in the early drug discovery pipeline are progressed primarily based on potency against the intended target(s) and selectivity against a very narrow slice of the proteome. So, why is there a tendency to wait until SMs are matured before probing for a deeper mechanistic understanding? For one, there is a concern about the interpretation of complex -omic data outputs and the resources needed to test these hypotheses. However, with recent advances in broad endpoint profiling assays that have companion reference databases and refined technology integration strategies, we argue that data complexity can translate into meaningful decision-making. This same strategy can also prioritize phenotypic screening hits to increase the likelihood of accessing unprecedented target space. In this Perspective. we will highlight a cohesive process that supports SM hit prosecution, providing a data-driven rationale and a suite of methods for direct identification of SM targets driving relevant biological end points.


Subject(s)
Drug Discovery , Proteome/drug effects , Small Molecule Libraries/pharmacology , Animals , High-Throughput Screening Assays , Humans
5.
Proc Natl Acad Sci U S A ; 111(37): E3929-36, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25197063

ABSTRACT

The repressor element 1 (RE1) silencing transcription factor (REST) in stem cells represses hundreds of genes essential to neuronal function. During neurogenesis, REST is degraded in neural progenitors to promote subsequent elaboration of a mature neuronal phenotype. Prior studies indicate that part of the degradation mechanism involves phosphorylation of two sites in the C terminus of REST that require activity of beta-transducin repeat containing E3 ubiquitin protein ligase, ßTrCP. We identify a proline-directed phosphorylation motif, at serines 861/864 upstream of these sites, which is a substrate for the peptidylprolyl cis/trans isomerase, Pin1, as well as the ERK1/2 kinases. Mutation at S861/864 stabilizes REST, as does inhibition of Pin1 activity. Interestingly, we find that C-terminal domain small phosphatase 1 (CTDSP1), which is recruited by REST to neuronal genes, is present in REST immunocomplexes, dephosphorylates S861/864, and stabilizes REST. Expression of a REST peptide containing S861/864 in neural progenitors inhibits terminal neuronal differentiation. Together with previous work indicating that both REST and CTDSP1 are expressed to high levels in stem cells and down-regulated during neurogenesis, our results suggest that CTDSP1 activity stabilizes REST in stem cells and that ERK-dependent phosphorylation combined with Pin1 activity promotes REST degradation in neural progenitors.


Subject(s)
Cell Differentiation , Extracellular Signal-Regulated MAP Kinases/metabolism , Neurons/cytology , Neurons/metabolism , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Repressor Proteins/metabolism , Animals , Chickens , Chromatin/metabolism , Epidermal Growth Factor/metabolism , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , MAP Kinase Signaling System , Mice , Mutation/genetics , NIMA-Interacting Peptidylprolyl Isomerase , PC12 Cells , Peptides/metabolism , Peptidylprolyl Isomerase/metabolism , Phosphorylation , Phosphoserine/metabolism , Protein Binding , Protein Stability , Proteolysis , Rats , beta-Transducin Repeat-Containing Proteins/metabolism , ras Proteins/metabolism
6.
Elife ; 3: e04235, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25250711

ABSTRACT

The bivalent hypothesis posits that genes encoding developmental regulators required for early lineage decisions are poised in stem/progenitor cells by the balance between a repressor histone modification (H3K27me3), mediated by the Polycomb Repressor Complex 2 (PRC2), and an activator modification (H3K4me3). In this study, we test whether this mechanism applies equally to genes that are not required until terminal differentiation. We focus on the RE1 Silencing Transcription Factor (REST) because it is expressed highly in stem cells and is an established global repressor of terminal neuronal genes. Elucidation of the REST complex, and comparison of chromatin marks and gene expression levels in control and REST-deficient stem cells, shows that REST target genes are poised by a mechanism independent of Polycomb, even at promoters which bear the H3K27me3 mark. Specifically, genes under REST control are actively repressed in stem cells by a balance of the H3K4me3 mark and a repressor complex that relies on histone deacetylase activity. Thus, chromatin distinctions between pro-neural and terminal neuronal genes are established at the embryonic stem cell stage by two parallel, but distinct, repressor pathways.


Subject(s)
Cell Differentiation , Histone Deacetylases/metabolism , Neurons/cytology , Neurons/enzymology , Polycomb Repressive Complex 2/metabolism , Repressor Proteins/metabolism , Animals , Chromatin/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Histones/metabolism , Lysine/metabolism , Methylation , Mice , Phenotype , Promoter Regions, Genetic
7.
J Am Coll Cardiol ; 60(7): 618-25, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22703929

ABSTRACT

OBJECTIVES: This study sought to evaluate the contribution of microvascular functional rarefaction and changes in vascular mechanical properties to the development of hypertension and secondary ventricular remodeling that occurs with anti-vascular endothelial growth factor (VEGF) therapy. BACKGROUND: Hypertension is a common side effect of VEGF inhibitors used in cancer medicine. METHODS: Mice were treated for 5 weeks with an anti-murine VEGF-A monoclonal antibody, antibody plus ramipril, or sham treatment. Microvascular blood flow (MBF) and blood volume (MBV) were quantified by contrast-enhanced ultrasound in skeletal muscle, left ventricle (LV), and kidney. Echocardiography and invasive hemodynamics were used to assess ventricular function, dimensions and vascular mechanical properties. RESULTS: Ambulatory blood pressure increased gradually over the first 3 weeks of anti-VEGF therapy. Compared with controls, anti-VEGF-treated mice had similar aortic elastic modulus and histological appearance, but a marked increase in arterial elastance, indicating increased afterload, and elevated plasma angiotensin II. Increased afterload in treated mice led to concentric LV remodeling and reduced stroke volume without impaired LV contractility determined by LV peak change in pressure over time (dp/dt) and the end-systolic dimension-pressure relation. Anti-VEGF therapy did not alter MBF or MBV in skeletal muscle, myocardium, or kidney; but did produce cortical mesangial glomerulosclerosis. Ramipril therapy almost entirely prevented the adverse hemodynamic effects, increased afterload, and LV remodeling in anti-VEGF-treated mice. CONCLUSIONS: Neither reduced functional microvascular density nor major alterations in arterial mechanical properties are primary causes of hypertension during anti-VEGF therapy. Inhibition of VEGF leads to an afterload mismatch state, increased angiotensin II, and LV remodeling, which are all ameliorated by angiotensin-converting enzyme inhibition.


Subject(s)
Antibodies, Monoclonal/adverse effects , Hypertension/chemically induced , Microcirculation/drug effects , Neoplasms/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Aorta/pathology , Echocardiography , Hemodynamics/drug effects , Hypertension/diagnostic imaging , Hypertension/pathology , Kidney/drug effects , Kidney/pathology , Mice , Mice, Inbred C57BL , Ramipril/administration & dosage , Renal Circulation/drug effects , Vascular Endothelial Growth Factor A/immunology
8.
Mutat Res ; 706(1-2): 21-7, 2011 Jan 10.
Article in English | MEDLINE | ID: mdl-21035468

ABSTRACT

A hallmark of aberrant DNA methylation-associated silencing is reversibility. However, long-term stability of reactivated promoters has not been explored. To examine this issue, spontaneous reactivant clones were isolated from mouse embryonal carcinoma cells bearing aberrantly silenced Aprt alleles and re-silencing frequencies were determined as long as three months after reactivation occurred. Despite continuous selection for expression of the reactivated Aprt alleles, exceptionally high spontaneous re-silencing frequencies were observed. A DNA methylation analysis demonstrated retention of sporadic methylation of CpG sites in a protected region of the Aprt promoter in many reactivant alleles suggesting a role for these methylated sites in the re-silencing process. In contrast, a chromatin immunoprecipitation (ChIP) analysis for methyl-H3K4, acetyl-H3K9, and dimethyl-H3K9 levels failed to reveal a specific histone modification that could explain high frequency re-silencing. These results demonstrate that aberrantly silenced and reactivated promoters retain a persistent memory of having undergone the silencing process and suggest the failure to eliminate all CpG methylation as a potential contributing mechanism.


Subject(s)
Adenine Phosphoribosyltransferase/genetics , CpG Islands/genetics , DNA Methylation , Promoter Regions, Genetic/genetics , Animals , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Cell Line, Tumor , Chromatin Immunoprecipitation , DNA Modification Methylases/antagonists & inhibitors , Decitabine , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Hydroxamic Acids/pharmacology , Lysine/metabolism , Methylation , Mice , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
9.
PLoS One ; 4(3): e4832, 2009.
Article in English | MEDLINE | ID: mdl-19279688

ABSTRACT

BACKGROUND: Aberrant epigenetic silencing plays a major role in cancer formation by inactivating tumor suppressor genes. While the endpoints of aberrant silencing are known, i.e., promoter region DNA methylation and altered histone modifications, the triggers of silencing are not known. We used the tet-off system to test the hypothesis that a transient reduction in gene expression will sensitize a promoter to undergo epigenetic silencing. METHODOLOGY/PRINCIPAL FINDINGS: The tet responsive promoter (P(TRE)) was used to drive expression of the selectable human HPRT cDNA in independent transfectants of an Hprt deficient mouse cell line. In this system, high basal HPRT expression is greatly reduced when doxycycline (Dox) is added to the culture medium. Exposure of the P(TRE)-HPRT transfectants to Dox induced HPRT deficient clones in a time dependent manner. A molecular analysis demonstrated promoter region DNA methylation, loss of histone modifications associated with expression (i.e., H3 lysine 9 and 14 acetylation and lysine 4 methylation), and acquisition of the repressive histone modification H3 lysine 9 methylation. These changes, which are consistent with aberrant epigenetic silencing, were not present in the Dox-treated cultures, with the exception of reduced H3 lysine 14 acetylation. Silenced alleles readily reactivated spontaneously or after treatment of cells with inhibitors of histone deacetylation and/or DNA methylation, but re-silencing of reactivated alleles did not require a new round of Dox exposure. Inhibition of histone deacetylation inhibited both the induction of silencing and re-silencing, whereas inhibition of DNA methylation had no such effect. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that a transient reduction in gene expression triggers a pathway for aberrant silencing in mammalian cells and identifies histone deacetylation as a critical early step in this process. DNA methylation, in contrast, is a secondary step in the silencing pathway under study. A model to explain these observations is offered.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Gene Silencing , Acetylation , Alleles , Animals , Culture Media , DNA Primers , Doxycycline/pharmacology , Gene Expression Regulation/drug effects , Hypoxanthine Phosphoribosyltransferase/genetics , Mice , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...