Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatrics ; 149(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34918158

ABSTRACT

OBJECTIVES: To inform next steps in pediatric diarrhea burden reduction by understanding the shifting enteropathogen landscape after rotavirus vaccine implementation. METHODS: We conducted a case-control study of 1788 medically attended children younger than 5 years, with and without gastroenteritis, after universal rotavirus vaccine implementation in Peru. We tested case and control stools for 5 viruses, 19 bacteria, and parasites; calculated coinfection-adjusted attributable fractions (AFs) to determine pathogen-specific burdens; and evaluated pathogen-specific gastroenteritis severity using Clark and Vesikari scales. RESULTS: Six pathogens were independently positively associated with gastroenteritis: norovirus genogroup II (GII) (AF 29.1, 95% confidence interval [CI]: 28.0-32.3), rotavirus (AF 8.9, 95% CI: 6.8-9.7), sapovirus (AF 6.3, 95% CI: 4.3-7.4), astrovirus (AF 2.8, 95% CI: 0.0-4.0); enterotoxigenic Escherichia coli heat stable and/or heat labile and heat stable (AF 2.4, 95% CI: 0.6-3.1), and Shigella spp. (AF 2.0, 95% CI: 0.4-2.2). Among typeable rotavirus cases, we most frequently identified partially heterotypic strain G12P[8] (54 of 81, 67%). Mean severity was significantly higher for norovirus GII-positive cases relative to norovirus GII-negative cases (Vesikari [12.7 vs 11.8; P < .001] and Clark [11.7 vs 11.4; P = .016]), and cases in the 6- to 12-month age range relative to cases in other age groups (Vesikari [12.7 vs 12.0; P = .0002] and Clark [12.0 vs 11.4; P = .0016]). CONCLUSIONS: Norovirus is well recognized as the leading cause of pediatric gastroenteritis in settings with universal rotavirus vaccination. However, sapovirus is often overlooked. Both norovirus and sapovirus contribute significantly to the severe pediatric disease burden in this setting. Decision-makers should consider multivalent vaccine acquisition strategies to target multiple caliciviruses in similar countries after successful rotavirus vaccine implementation.


Subject(s)
Gastroenteritis/microbiology , Gastroenteritis/prevention & control , Rotavirus Infections/prevention & control , Rotavirus Vaccines , Case-Control Studies , Child, Preschool , Diarrhea/microbiology , Diarrhea/prevention & control , Diarrhea/virology , Feces/microbiology , Feces/virology , Gastroenteritis/parasitology , Gastroenteritis/virology , Genotype , Humans , Norovirus/genetics , Peru , Prospective Studies , Rotavirus/genetics , Sapovirus/genetics , Severity of Illness Index
2.
Trends Biotechnol ; 38(9): 943-947, 2020 09.
Article in English | MEDLINE | ID: mdl-32600777

ABSTRACT

Vaccine solutions rarely reach the public until after an outbreak abates; an Ebola vaccine was approved 5 years after peak outbreak and SARS, MERS, and Zika vaccines are still in clinical development. Despite massive leaps forward in rapid science, other regulatory bottlenecks are hamstringing the global effort for pandemic vaccines.


Subject(s)
Coronavirus Infections/prevention & control , Drug Approval/organization & administration , Hemorrhagic Fever, Ebola/prevention & control , Influenza, Human/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/biosynthesis , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Ebola Vaccines/administration & dosage , Ebola Vaccines/biosynthesis , Ebolavirus/drug effects , Ebolavirus/immunology , Ebolavirus/pathogenicity , Europe/epidemiology , Global Health/trends , Government Regulation , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/biosynthesis , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza, Human/virology , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/virology , United States/epidemiology , Viral Vaccines/administration & dosage , Zika Virus/drug effects , Zika Virus/immunology , Zika Virus/pathogenicity , Zika Virus Infection/epidemiology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...