Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Synth Biol ; 12(9): 2561-2577, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37490644

ABSTRACT

The fragility of biological systems during storage, transport, and utilization necessitates reliable cold-chain infrastructure and limits the potential of biotechnological applications. In order to unlock the broad applications of existing and emerging biological technologies, we report the development of a novel solid-state storage platform for complex biologics. The resulting solid-state biologics (SSB) platform meets four key requirements: facile rehydration of solid materials, activation of biochemical activity, ability to support complex downstream applications and functionalities, and compatibility for deployment in a variety of reaction formats and environments. As a model system of biochemical complexity, we utilized crudeEscherichia colicell extracts that retain active cellular metabolism and support robust levels of in vitro transcription and translation. We demonstrate broad versatility and utility of SSB through proof-of-concepts for on-demand in vitro biomanufacturing of proteins at a milliliter scale, the activation of downstream CRISPR activity, as well as deployment on paper-based devices. SSBs unlock a breadth of applications in biomanufacturing, discovery, diagnostics, and education in resource-limited environments on Earth and in space.


Subject(s)
Biological Products , Proteins , Biotechnology , Cell-Free System
2.
Methods Protoc ; 6(2)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37104018

ABSTRACT

Cell-free protein synthesis (CFPS) is a method utilized for producing proteins without the limits of cell viability. The plug-and-play utility of CFPS is a key advantage over traditional plasmid-based expression systems and is foundational to the potential of this biotechnology. A key limitation of CFPS is the varying stability of DNA types, limiting the effectiveness of cell-free protein synthesis reactions. Researchers generally rely on plasmid DNA for its ability to support robust protein expression in vitro. However, the overhead required to clone, propagate, and purify plasmids reduces the potential of CFPS for rapid prototyping. While linear templates overcome the limits of plasmid DNA preparation, linear expression templates (LETs) were under-utilized due to their rapid degradation in extract based CFPS systems, limiting protein synthesis. To reach the potential of CFPS using LETs, researchers have made notable progress toward protection and stabilization of linear templates throughout the reaction. The current advancements range from modular solutions, such as supplementing nuclease inhibitors and genome engineering to produce strains lacking nuclease activity. Effective application of LET protection techniques improves expression yields of target proteins to match that of plasmid-based expression. The outcome of LET utilization in CFPS is rapid design-build-test-learn cycles to support synthetic biology applications. This review describes the various protection mechanisms for linear expression templates, methodological insights for implementation, and proposals for continued efforts that may further advance the field.

3.
Front Bioeng Biotechnol ; 10: 895069, 2022.
Article in English | MEDLINE | ID: mdl-35814024

ABSTRACT

Cell-free protein synthesis (CFPS) is an in vitro process that enables diverse applications in research, biomanufacturing, point-of-care diagnostics, therapeutics, and education using minimal laboratory equipment and reagents. One of the major limitations of CFPS implementation is its sensitivity to plasmid type. Specifically, plasmid templates based on commonly used vector backbones such as the pET series of bacterial expression vectors result in the inferior production of proteins. To overcome this limitation, we have evaluated the effect of expression cassette elements present in the pET30 vector on protein production across three different CFPS systems: NEBExpress, PURExpress, and CFAI-based E. coli extracts. Through the systematic elimination of genetic elements within the pET30 vector, we have identified elements that are responsible for the poor performance of pET30 vectors in the various CFPS systems. As a result, we demonstrate that through the removal of the lac operator (lacO) and N-terminal tags included in the vector backbone sequence, a pET vector can support high titers of protein expression when using extract-based CFPS systems. This work provides two key advances for the research community: 1) identification of vector sequence elements that affect robust production of proteins; 2) evaluation of expression across three unique CFPS systems including CFAI extracts, NEBexpress, and PURExpress. We anticipate that this work will improve access to CFPS by enabling researchers to choose the correct expression backbone within the context of their preferred expression system.

4.
Methods Mol Biol ; 2433: 51-64, 2022.
Article in English | MEDLINE | ID: mdl-34985736

ABSTRACT

Cell-free protein synthesis (CFPS) is a powerful platform for synthetic biology, allowing for the controlled expression of proteins without reliance on living cells. However, the process of producing the cell extract, a key component of cell-free reactions, can be a bottleneck for new users to adopt CFPS as it requires technical knowledge and significant researcher oversight. Here, we provide a detailed method for implementing a simplified cell extract preparation workflow using CFAI media. We also provide a detailed protocol for the alternative, 2x YPTG media-based preparation process, as it represents a useful benchmark within the cell-free community.


Subject(s)
Escherichia coli , Protein Biosynthesis , Cell-Free System/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Synthetic Biology/methods
5.
Life (Basel) ; 11(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34947898

ABSTRACT

Cell-free systems are a rapidly expanding platform technology with an important role in the engineering of biological systems. The key advantages that drive their broad adoption are increased efficiency, versatility, and low cost compared to in vivo systems. Traditionally, in vivo platforms have been used to synthesize novel and industrially relevant proteins and serve as a testbed for prototyping numerous biotechnologies such as genetic circuits and biosensors. Although in vivo platforms currently have many applications within biotechnology, they are hindered by time-constraining growth cycles, homeostatic considerations, and limited adaptability in production. Conversely, cell-free platforms are not hindered by constraints for supporting life and are therefore highly adaptable to a broad range of production and testing schemes. The advantages of cell-free platforms are being leveraged more commonly by the biotechnology community, and cell-free applications are expected to grow exponentially in the next decade. In this study, new and emerging applications of cell-free platforms, with a specific focus on cell-free protein synthesis (CFPS), will be examined. The current and near-future role of CFPS within metabolic engineering, prototyping, and biomanufacturing will be investigated as well as how the integration of machine learning is beneficial to these applications.

6.
J Vis Exp ; (173)2021 07 22.
Article in English | MEDLINE | ID: mdl-34369932

ABSTRACT

Cell-free protein synthesis (CFPS) has grown as a biotechnology platform that captures transcription and translation machinery in vitro. Numerous developments have made the CFPS platform more accessible to new users and have expanded the range of applications. For lysate based CFPS systems, cell extracts can be generated from a variety of organisms, harnessing the unique biochemistry of that host to augment protein synthesis. Within the last 20 years, Escherichia coli (E. coli) has become one of the most widely used organisms for supporting CFPS due to its affordability and versatility. Despite numerous key advances, the workflow for E. coli cell extract preparation has remained a key bottleneck for new users to implement CFPS for their applications. The extract preparation workflow is time-intensive and requires technical expertise to achieve reproducible results. To overcome these barriers, we previously reported the development of a 24 hour cell-free autoinduction (CFAI) workflow that reduces user input and technical expertise required. The CFAI workflow minimizes the labor and technical skill required to generate cell extracts while also increasing the total quantities of cell extracts obtained. Here we describe that workflow in a step-by-step manner to improve access and support the broad implementation of E. coli based CFPS.


Subject(s)
Escherichia coli , Protein Biosynthesis , Biotechnology , Cell-Free System/metabolism , Escherichia coli/genetics , Workflow
7.
ACS Synth Biol ; 10(8): 1821-1829, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34269580

ABSTRACT

Cell-free protein synthesis (CFPS) is a platform biotechnology that has enabled the on-demand synthesis of proteins for a variety of applications. Numerous advances have improved the productivity of the CFPS platform to result in high-yielding reactions; however, many applications remain limited due to long reaction times. To overcome this limitation, we first established the benchmarks reaction times for CFPS across in-house E. coli extracts and commercial kits. We then set out to fine-tune our in-house extract systems to improve reaction times. Through the optimization of reaction composition and titration of low-cost additives, we have identified formulations that reduce reaction times by 30-50% to obtain high protein titers for biomanufacturing applications, and reduce times by more than 50% to reach the sfGFP detection limit for applications in education and diagnostics. Under optimum conditions, we report the visible observation of sfGFP signal in less than 10 min. Altogether, these advances enhance the utility of CFPS as a rapid, user-defined platform.


Subject(s)
Escherichia coli/chemistry , Protein Biosynthesis , Cell-Free System/chemistry , Cell-Free System/metabolism , Escherichia coli/metabolism
8.
Synth Syst Biotechnol ; 6(2): 95-101, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33997359

ABSTRACT

Fluorescent reporters have revolutionized modern applications in the fields of molecular and synthetic biology, enabling applications ranging from education to point-of-care diagnostics. Past advancements in these fields have primarily focused on improving reaction conditions, the development of new applications, and the broad dissemination of these technologies. However, field and classroom-based applications have remained limited in part due to the nature of fluorescent signal detection, which often requires the use of costly lab equipment to observe and quantify fluorescence readouts. Users without access to laboratory equipment rely on qualitative assessments of fluorescence, a process that remains highly variable from user-to-user even within the same classroom. To overcome this challenge, we have developed a foldable illuminator and incubator device to support field-applications of synthetic biology-based biosensors for education and diagnostics. The Fold-Illuminator is an affordable, portable, and recyclable device that allows for the visible detection of fluorescent biomolecules. The Fold-Illuminator's design allows for assembly in under 10 min, a user can then utilize the optional heating element to incubate biochemical reactions and visualize fluorescence outputs in a defined and light-controlled environment. Interchangeable LED strips and light-filtering screens provide modularity to pair with the fluorescence wavelengths of interest. The user can then unfold the device for convenient storage, transport, or even recycling. The cost for the Fold-Illuminator is $5.58 USD and is compatible with an optional heating element for an additional $3.98 cost, with potential for further reductions in cost for larger quantities. Open-source templates for cutting device parts from paper stock are provided for both printing and cutting by hand; cutting can also be achieved with consumer-grade smart cutting machines such as the Cricut®. Combined with the broad applications of fluorescent reporters, the Fold-Illuminator has the potential to improve access to fluorescence visualization and quantification for new users as well as emerging field applications.

9.
Article in English | MEDLINE | ID: mdl-32974303

ABSTRACT

Teaching the processes of transcription and translation is challenging due to the intangibility of these concepts and a lack of instructional, laboratory-based, active learning modules. Harnessing the genetic code in vitro with cell-free protein synthesis (CFPS) provides an open platform that allows for the direct manipulation of reaction conditions and biological machinery to enable inquiry-based learning. Here, we report our efforts to transform the research-based CFPS biotechnology into a hands-on module called the "Genetic Code Kit" for implementation into teaching laboratories. The Genetic Code Kit includes all reagents necessary for CFPS, as well as a laboratory manual, student worksheet, and augmented reality activity. This module allows students to actively explore transcription and translation while gaining exposure to an emerging research technology. In our testing of this module, undergraduate students who used the Genetic Code Kit in a teaching laboratory showed significant score increases on transcription and translation questions in a post-lab questionnaire compared with students who did not participate in the activity. Students also demonstrated an increase in self-reported confidence in laboratory methods and comfort with CFPS, indicating that this module helps prepare students for careers in laboratory research. Importantly, the Genetic Code Kit can accommodate a variety of learning objectives beyond transcription and translation and enables hypothesis-driven science. This opens the possibility of developing Course-Based Undergraduate Research Experiences (CUREs) based on the Genetic Code Kit, as well as supporting next-generation science standards in 8-12th grade science courses.

10.
ACS Synth Biol ; 9(10): 2765-2774, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32835484

ABSTRACT

Cell-free protein synthesis (CFPS) platforms have undergone numerous workflow improvements to enable diverse applications in research, biomanufacturing, and education. The Escherichia coli cell extract-based platform has been broadly adopted due to its affordability and versatility. The upstream processing of cells to generate crude cell lysate remains time-intensive and technically nuanced, representing one of the largest sources of cost associated with the biotechnology. To overcome these limitations, we have improved the processes by developing a long-lasting autoinduction media formulation for CFPS that obviates human intervention between inoculation and harvest. The cell-free autoinduction (CFAI) media supports the production of robust cell extracts from high cell density cultures nearing the stationary phase of growth. As a result, the total mass of cells and the resulting extract volume obtained increases by 400% while maintaining robust reaction yields of reporter protein, sfGFP (>1 mg/mL). Notably, the CFAI workflow allows users to go from cells on a streak plate to completing CFPS reactions within 24 h. The CFAI workflow uniquely enabled us to elucidate the metabolic limits in CFPS associated with cells grown to stationary phase in the traditional 2× YTPG media. Metabolomics analysis demonstrates that CFAI-based extracts overcome these limits due to improved energy metabolism and redox balance. The advances reported here shed new light on the metabolism associated with highly active CFPS reactions and inform future efforts to tune the metabolism in CFPS systems. Additionally, we anticipate that the improvements in the time and cost-efficiency of CFPS will increase the simplicity and reproducibility, reducing the barriers for new researchers interested in implementing CFPS.


Subject(s)
Culture Media/chemistry , Energy Metabolism , Escherichia coli/growth & development , Escherichia coli/metabolism , Metabolic Engineering/methods , Protein Biosynthesis , Biological Products/metabolism , Biomedical Technology/methods , Cell-Free System/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Metabolome , Metabolomics/methods , Oxidation-Reduction , Plasmids/genetics , Reproducibility of Results
11.
ACS Synth Biol ; 9(4): 766-778, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32083847

ABSTRACT

Cell-free protein synthesis (CFPS) is a platform biotechnology that enables a breadth of applications. However, field applications remain limited due to the poor shelf-stability of aqueous cell extracts required for CFPS. Lyophilization of E. coli extracts improves shelf life but remains insufficient for extended storage at room temperature. To address this limitation, we mapped the chemical space of ten low-cost additives with four distinct mechanisms of action in a combinatorial manner to identify formulations capable of stabilizing lyophilized cell extract. We report three key findings: (1) unique additive formulations that maintain full productivity of cell extracts stored at 4 °C and 23 °C; (2) additive formulations that enhance extract productivity by nearly 2-fold; (3) a machine learning algorithm that provides predictive capacity for the stabilizing effects of additive formulations that were not tested experimentally. These findings provide a simple and low-cost advance toward making CFPS field-ready and cost-competitive for biomanufacturing.


Subject(s)
Cell Extracts , Cell-Free System , Escherichia coli , Protein Biosynthesis/drug effects , Synthetic Biology/methods , Biotechnology , Cell Extracts/chemistry , Cell Extracts/pharmacology , Cell Extracts/standards , Escherichia coli/chemistry , Escherichia coli/metabolism , Freeze Drying/methods
12.
Methods Protoc ; 2(1)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-31164605

ABSTRACT

Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.

13.
J Vis Exp ; (144)2019 02 25.
Article in English | MEDLINE | ID: mdl-30855561

ABSTRACT

Over the last 50 years, Cell-Free Protein Synthesis (CFPS) has emerged as a powerful technology to harness the transcriptional and translational capacity of cells within a test tube. By obviating the need to maintain the viability of the cell, and by eliminating the cellular barrier, CFPS has been foundational to emerging applications in biomanufacturing of traditionally challenging proteins, as well as applications in rapid prototyping for metabolic engineering, and functional genomics. Our methods for implementing an E. coli-based CFPS platform allow new users to access many of these applications. Here, we describe methods to prepare extract through the use of enriched media, baffled flasks, and a reproducible method of tunable sonication-based cell lysis. This extract can then be used for protein expression capable of producing 900 µg/mL or more of super folder green fluorescent protein (sfGFP) in just 5 h from experimental setup to data analysis, given that appropriate reagent stocks have been prepared beforehand. The estimated startup cost of obtaining reagents is $4,500 which will sustain thousands of reactions at an estimated cost of $0.021 per µg of protein produced or $0.019 per µL of reaction. Additionally, the protein expression methods mirror the ease of the reaction setup seen in commercially available systems due to optimization of reagent pre-mixes, at a fraction of the cost. In order to enable the user to leverage the flexible nature of the CFPS platform for broad applications, we have identified a variety of aspects of the platform that can be tuned and optimized depending on the resources available and the protein expression outcomes desired.


Subject(s)
Cell-Free System , Escherichia coli/metabolism , Green Fluorescent Proteins/biosynthesis , Protein Biosynthesis , Escherichia coli/genetics
14.
J Chem Inf Model ; 59(5): 2383-2393, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30879307

ABSTRACT

MEK1 is a protein kinase in the MAPK cellular signaling pathway that is notable for its dual specificity and its potential as a drug target for a variety of cancer therapies. While much is known about the key role of MEK1 in signaling events, understanding of the structural features that sustain MEK1 function remains limited because of the absence of crystal or NMR structural insights into the phosphorylated and activated form of MEK1. In this work, homology modeling was used to overcome this limitation and generate computational models of the doubly phosphorylated active MEK1 conformation. A variety of models were generated using crystal structures of active protein kinases as homology model templates. These models were equilibrated using molecular dynamics simulations, and each model was validated against several known structural characteristics of activated kinases. The best model structures were used in docking studies with ATP and a small peptide sequence that represents the activation loop of ERK2 to identify the most important residues in stabilizing protein docking and phosphorylation. These results provide insights for the pursuit of structure-guided mutagenesis and drug design.


Subject(s)
Catalytic Domain , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Models, Molecular , Molecular Docking Simulation , Enzyme Activation , Humans , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction
15.
Nat Commun ; 6: 8168, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26350765

ABSTRACT

Understanding the functional and structural consequences of site-specific protein phosphorylation has remained limited by our inability to produce phosphoproteins at high yields. Here we address this limitation by developing a cell-free protein synthesis (CFPS) platform that employs crude extracts from a genomically recoded strain of Escherichia coli for site-specific, co-translational incorporation of phosphoserine into proteins. We apply this system to the robust production of up to milligram quantities of human MEK1 kinase. Then, we recapitulate a physiological signalling cascade in vitro to evaluate the contributions of site-specific phosphorylation of mono- and doubly phosphorylated forms on MEK1 activity. We discover that only one phosphorylation event is necessary and sufficient for MEK1 activity. Our work sets the stage for using CFPS as a rapid high-throughput technology platform for direct expression of programmable phosphoproteins containing multiple phosphorylated residues. This work will facilitate study of phosphorylation-dependent structure-function relationships, kinase signalling networks and kinase inhibitor drugs.


Subject(s)
Cell-Free System , MAP Kinase Kinase 1/biosynthesis , Phosphoproteins/biosynthesis , Phosphoserine/metabolism , Recombinant Proteins/biosynthesis , Blotting, Western , Enzyme Assays , Escherichia coli , Green Fluorescent Proteins , Humans , MAP Kinase Kinase 1/metabolism , Mass Spectrometry , Phosphoproteins/metabolism , Phosphorylation , Protein Biosynthesis , Recombinant Proteins/metabolism
16.
Biochemistry ; 51(12): 2378-89, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22401293

ABSTRACT

Hydrogenotrophic methanogens possessing the hydrogen-dependent dehydrogenase Hmd also encode paralogs of this protein whose function is poorly understood. Here we present biochemical evidence that the two inactive Hmd paralogs of Methanocaldococcus jannaschii, HmdII and HmdIII, form binary and ternary complexes with several components of the protein translation apparatus. HmdII and HmdIII, but not the active dehydrogenase Hmd, bind with micromolar binding affinities to a number of tRNAs and form ternary complexes with tRNA(Pro) and prolyl-tRNA synthetase (ProRS). Fluorescence spectroscopy experiments also suggest that binding of HmdII and ProRS involves distinct binding determinants on the tRNA. These biochemical data suggest the possibility of a regulatory link between energy production and protein translation pathways that may allow a rapid cellular response to altered environmental conditions.


Subject(s)
Archaeal Proteins/biosynthesis , Hydrogen/metabolism , Methanococcaceae/metabolism , Amino Acid Sequence , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Protein Multimerization , Protein Structure, Quaternary , Thermodynamics
18.
FEMS Microbiol Lett ; 245(1): 53-9, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15796979

ABSTRACT

Salmonella enterica serovar Typhimurium was previously shown to be virulent in Caenorhabditis elegans. Here we demonstrate that DNA adenine methyltransferase (DAM) modulates Salmonella virulence in the nematode, as it does in mice. After 5 days of continual exposure to bacteria, twice as many worms died when exposed to the wild-type than the dam-mutant strain of Salmonella. Similar trends in virulence were observed when worms were exposed to Salmonella strains for 5 h and transferred to the avirulent Escherichia coli OP50. While a 10-fold attenuation was observed in the absence of DAM, the dam-strain was still able to infect and persist in the host worm. Our results further support the use of C. elegans as an accessible and readily studied animal model of bacterial pathogenesis. However, our results suggest that crucial host responses differ between the murine and nematode models. Additionally, we carried out preliminary liquid culture based experiments with the long term goal of developing high throughput animal based screens of DAM inhibitors.


Subject(s)
Caenorhabditis elegans/microbiology , DNA Methylation , Salmonella typhimurium/pathogenicity , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Animals , Caenorhabditis elegans/growth & development , Culture Media , Mutation , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...