Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(6): 2931-2938, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32095715

ABSTRACT

A material design approach was taken for the preparation of an organic ionic plastic crystal (OIPC)-polymer electrolyte material that exhibited both good mechanical and transport properties. Previous attempts to form this type of electrolyte material resulted in the solvation of the OIPC by the ionomer and loss of the plastic crystal component. Here, we prepared, in situ, a macrophase-separated OIPC-polymer electrolyte system by adding lithium bis(fluorosulfonyl)imide (LiFSI) to a (PAMPS-N1222) ionomer. It was found that an optimal compositional window of 40-50 mol % LiFSI exists whereby the electrolyte conductivity suddenly increased 4 orders of magnitude while exhibiting elastic and flexible mechanical properties. The phase behavior and transport properties were studied using differential scanning calorimetry and 7Li and 19F solid-state nuclear magnetic resonance spectroscopy. This is the first example of a fabrication principle that lends itself to a wide range of promising OIPC and ionomeric materials. Subsequent studies are required to characterize and understand the morphology and conductive nature of these systems and their application as electrolyte materials.

2.
Phys Chem Chem Phys ; 18(28): 19011-9, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27355988

ABSTRACT

Li(+) cation conducting ionomers based on poly(2-acrylamido-2-methyl-1-propane sulphonic acid) (PAMPS) incorporating a low molecular weight plasticizer have been characterized. Previously we have observed an apparent decoupling of ionic conductivity and lithium ion dynamics from the Tg of this ionomer along with an increase in ionic conductivity obtained by incorporating a quaternary ammonium co-cation. The incorporation of tetraglyme as a coordinating plasticizer was investigated in order to further improve the ion dissociation and dynamics. Solid-state NMR, thermal analysis, impedance spectroscopy and infrared spectroscopy were used to characterize these systems. As expected, the glass transition temperature Tg decreased upon the addition of the plasticizer. However, in contrast to the previously reported Na-conducting systems, the ionic conductivity was also decreased by several orders of magnitude, indicating that the tetraglyme recouples the conductivity back to the polymer dynamics. Temperature dependent (7)Li NMR line width and T1 measurements were used to probe the Li(+) dynamics, which were found to be dependent on the Li(+) concentration, the nature of the co-cation and the presence or absence of tetraglyme.

SELECTION OF CITATIONS
SEARCH DETAIL
...