Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Front Cell Neurosci ; 17: 1084803, 2023.
Article in English | MEDLINE | ID: mdl-36814868

ABSTRACT

To maintain the eusociality of a colony, ants recognize subtle differences in colony-specific sets of cuticular hydrocarbons (CHCs). The CHCs are received by female-specific antennal basiconic sensilla and processed in specific brain regions. However, it is controversial whether a peripheral or central neural mechanism is mainly responsible for discrimination of CHC blends. In the Japanese carpenter ant, Camponotus japonicus, about 140 sensory neurons (SNs) are co-housed in a single basiconic sensillum and receive colony-specific blends of 18 CHCs. The complexity of this CHC sensory process makes the neural basis of peripheral nestmate recognition difficult to understand. Here, we electrophysiologically recorded responses of single basiconic sensilla to each of 18 synthesized CHCs, and identified CHC responses of each SN co-housed in a single sensillum. Each CHC activated different sets of SNs and each SN was broadly tuned to CHCs. Multiple SNs in a given sensillum fired in synchrony, and the synchronicity of spikes was impaired by treatment with a gap junction inhibitor. These results indicated that SNs in single basiconic sensilla were electrically coupled. Quantitative analysis indicated that the Japanese carpenter ants have the potential to discriminate chemical structures of CHCs based on the combinational patterns of activated SNs. SNs of ants from different colonies exhibited different CHC response spectra. In addition, ants collected from the same colony but bred in separate groups also exhibited different CHC response spectra. These results support the hypothesis that the peripheral sensory mechanism is important for discrimination between nestmate and non-nestmate ants.

2.
Front Physiol ; 13: 844084, 2022.
Article in English | MEDLINE | ID: mdl-36111148

ABSTRACT

The invasive Argentine ants (Linepithema humile) and the red imported fire ants (Solenopsis invicta) constitute a worldwide threat, causing severe disruption to ecological systems and harming human welfare. In view of the limited success of current pest control measures, we propose here to employ repellents as means to mitigate the effect of these species. We demonstrate that cuticular hydrocarbons (CHCs) used as nestmate-recognition pheromone in the Japanese carpenter ant (Camponotus japonicus), and particularly its (Z)-9-tricosene component, induced vigorous olfactory response and intense aversion in these invasive species. (Z)-9-Tricosene, when given to their antennae, caused indiscriminate glomerular activation of antennal lobe (AL) regions, creating neural disarray and leading to aversive behavior. Considering the putative massive central neural effect, we suggest that the appropriate use of certain CHCs of native ants can facilitate aversive withdrawal of invasive ants.

3.
Biol Bull ; 243(3): 339-352, 2022 12.
Article in English | MEDLINE | ID: mdl-36716483

ABSTRACT

AbstractThe marine gastropod Onchidium verruculatum has a pair of ocular photoreceptors, the stalk eyes, on the tip of its stalk near the head, as well as several extracephalic photosensory organs. The retinas of the stalk eye consist of two morphologically distinct visual cells, namely, the type I cells equipped with well-developed microvilli and the type II cells with less developed microvilli. The extracephalic photosensors comprise the dorsal eye, dermal photoreceptor, and brain photosensitive neurons. The characteristics of these cephalic and extracephalic photosensory organs have been studied from morphological and electrophysiological perspectives. However, little is known about the visual pigment molecules responsible for light detection in these organs. In the present study, we searched for opsin molecules that are expressed in the neural tissues of Onchidium and identified six putative signaling-competent opsin species, including Xenopsin1, Xenopsin2, Gq-coupled rhodopsin1, Gq-coupled rhodopsin2, Opsin-5B, and Gq-coupled rhodopsin-like. Immunohistochemical staining of four of the six opsins revealed that Xenopsin1, Gq-coupled rhodopsin1, and Gq-coupled rhodopsin2 are expressed in the rhabdomere of the stalk eye and in the dermal photoreceptor. Xenopsin2 was expressed in the type II photoreceptors of the stalk eye and in the ciliary photoreceptors of the dorsal eye. These immunohistochemical data were consistent with the results of the expression analysis, revealed by quantitative reverse transcription polymerase chain reaction. This study clarified the identities of opsins expressed in the extracephalic photosensory organs of Onchidium and the distinct molecular compositions among the photoreceptors.


Subject(s)
Gastropoda , Animals , Gastropoda/metabolism , Opsins/genetics , Photoreceptor Cells , Eye/metabolism , Vision, Ocular
4.
Sci Adv ; 7(47): eabg1530, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797713

ABSTRACT

In terrestrial mammals, body volatiles can effectively trigger or block conspecific aggression. Here, we tested whether hexadecanal (HEX), a human body volatile implicated as a mammalian-wide social chemosignal, affects human aggression. Using validated behavioral paradigms, we observed a marked dissociation: Sniffing HEX blocked aggression in men but triggered aggression in women. Next, using functional brain imaging, we uncovered a pattern of brain activity mirroring behavior: In both men and women, HEX increased activity in the left angular gyrus, an area implicated in perception of social cues. HEX then modulated functional connectivity between the angular gyrus and a brain network implicated in social appraisal (temporal pole) and aggressive execution (amygdala and orbitofrontal cortex) in a sex-dependent manner consistent with behavior: increasing connectivity in men but decreasing connectivity in women. These findings implicate sex-specific social chemosignaling at the mechanistic heart of human aggressive behavior.

5.
Insects ; 12(9)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34564213

ABSTRACT

Self-grooming of the antennae is frequently observed in ants. This antennal maintenance behavior is presumed to be essential for effective chemical communication but, to our knowledge, this has not yet been well studied. When we removed the antenna-cleaning apparatuses of the Japanese carpenter ant (C. japonicus) to limit the self-grooming of the antennae, the worker ants demonstrated the self-grooming gesture as usual, but the antennal surface could not be sufficiently cleaned. By using scanning electron microscopy with NanoSuit, we observed the ants' antennae for up to 48 h and found that the antennal surfaces gradually became covered with self-secreted surface material. Concurrently, the self-grooming-limited workers gradually lost their behavioral responsiveness to undecane-the alarm pheromone. Indeed, their locomotive response to the alarm pheromone diminished for up to 24 h after the antenna cleaner removal operation. In addition, the self-grooming-limited workers exhibited less frequent aggressive behavior toward non-nestmate workers, and 36 h after the operation, approximately half of the encountered non-nestmate workers were accepted as nestmates. These results suggest that the antennal sensing system is affected by excess surface material; hence, their proper function is prevented until they are cleaned.

6.
Sci Rep ; 11(1): 10712, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040019

ABSTRACT

Alien ant species (Formicidae, Hymenoptera) cause serious damage worldwide. Early detection of invasion and rapid management are significant for controlling these species. However, these attempts are sometimes hindered by the need for direct detection techniques, such as capture, visual observation, or morphological identification. In this study, we demonstrated that environmental DNA (eDNA) analysis can be used as a monitoring tool for alien ants using Linepithema humile (Argentine ant), one of the most invasive ants, as a model species. We designed a new real-time PCR assay specific to L. humile and successfully detected eDNA from the surface soil. The reliability of eDNA analysis was substantiated by comparing eDNA detection results with traditional survey results. Additionally, we examined the relationship between eDNA concentration and distance from nests and trails. Our results support the effectiveness of eDNA for alien ant monitoring and suggest that this new method could improve our ability to detect invasive ant species.


Subject(s)
DNA, Environmental/isolation & purification , Environmental Monitoring , Soil/chemistry , Animals , Ants/chemistry , Ants/genetics , DNA, Environmental/genetics , Humans , Introduced Species
7.
J Neurosci Methods ; 351: 109066, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33417965

ABSTRACT

BACKGROUND: Segmentation of electron microscopic continuous section images by deep learning has attracted attention as a technique to reduce the cost of annotation for researchers attempting to make observations using 3D reconstruction methods. However, when the observed samples are rare, or scanning circumstances are unstable, pursuing generalization performance for newly obtained samples is not appropriate. NEW METHODS: We assume a transductive setting that predicts all labels in a dataset from only partially obtained labels while avoiding the pursuit of generalization performance for unknown data. Then, we propose sequential semi-supervised segmentation (4S), which semi-automatically extracts neural regions from electron microscopy image stacks. This method focuses on the fact that adjacent images have a strong correlation in serial images. Our 4S repeats training, inference, and pseudo-labeling using a minimal number of teacher labels and performs segmentation on all slices. RESULT: Our experiments using two types of serial section images showed effectiveness in terms of both quality and quantity. In addition, we experimentally clarified the effect of the number and position of teacher labels on performance. COMPARISON WITH EXISTING METHODS: Compared with supervised learning when a small number of labeled data was obtained, the performance of the proposed method was shown to be superior. CONCLUSION: Our 4S leverages a limited number of labeled data and a large amount of unlabeled data to extract neural regions from serial image stacks in a transductive setting. We plan to develop this method as a core module of a general-purpose annotation tool in our future work.


Subject(s)
Image Processing, Computer-Assisted , Microscopy, Electron
8.
Zoological Lett ; 6(1): 16, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33292700

ABSTRACT

Appetite or feeding motivation relies significantly on food odors. In the blowfly Phormia regina, feeding motivation for sucrose is decreased by the odor of D-limonene but increased by the odor of 1-octen-3-ol odor. These flies have antennal lobes (ALs) consisting of several tens of glomerular pairs as a primary olfactory center in the brain. Odor information from different olfactory organs-specifically, the antennae and maxillary palps-goes to the corresponding glomeruli. To investigate how odors differently affect feeding motivation, we identified the olfactory organs and glomeruli that are activated by nonappetitive and appetitive odors. We first constructed a glomerular map of the antennal lobe in P. regina. Anterograde fluorescence labeling of antennal and maxillary afferent nerves, both of which project into the contralateral and ipsilateral ALs, revealed differential staining in glomerular regions. Some of the axonal fiber bundles from the antennae and maxillary palps projected to the subesophageal ganglion (SOG). We visualized the activation of the glomeruli in response to odor stimuli by immunostaining phosphorylated extracellular signal-regulated kinase (pERK). We observed different glomerulus activation under different odor stimulations. Referring to our glomerular map, we determined that antennal exposure to D-limonene odor activated the DA13 glomeruli, while exposure of the maxillary palps to 1-octen-3-ol activated the MxB1 glomeruli. Our results indicated that a nonappetitive odor input from the antennae and an appetitive odor input from the maxillary palps activate different glomeruli in the different regions of ALs in the blowfly P. regina. Collectively, our findings suggest that compartmentalization of glomeruli in AL is essential for proper transmission of odor information.

9.
Zoolog Sci ; 37(4): 371-381, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32729716

ABSTRACT

Camponotus japonicus uses basiconic antennal sensilla (s. basiconica) to sense a colony-specific blend of species-specific cuticular hydrocarbons (CHCs). The inner portion of the s. basiconica is filled with sensillar lymph and chemosensory proteins (CSPs) presumed to transport CHCs to olfactory neuron receptors. Although 12 CSPs have been found in C. japonicus antennae, we focused on CjapCSP1 and CjapCSP13. The molecular basis of CSP1 function was explored by observation of its structure in solution at pH 4.0 and 7.0 through circular dichroism (CD) and X-ray solution scattering. Although the secondary structure did not vary with pH change, the radius of gyration (Rg) was larger by 5.3% (0.74 Å increase) at pH 4.0 than at pH 7.0. The dissociation constant (Kd) for CjapCSP1 measured with a fluorescent probe, 1-N-phenylnaphthylamine, was larger at pH 4.0 than at pH 7.0, suggesting that acidic pH triggers ligand dissociation. In contrast to CjapCSP1, the Rg of CjapCSP13 was slightly smaller at pH 4.0 than at pH 7.0. Western blotting and immunohistochemistry with protein-specific antisera revealed that both CjapCSP1 and CjapCSP13 are detected in the antennae, but differ in their specific internal localization. Binding to four compounds, including the ant CHC (z)-9-tricosene, was examined. Although both CjapCSP1 and CjapCSP13 bound to (z)-9-tricosene, CjapCSP13 bound with higher affinity than CjapCSP1 and showed different binding properties. CjapCSP1 and CjapCSP13 are synthesized by the same cells of the antenna, but function differently in CHC distribution due to differences in their localization and binding characteristics.


Subject(s)
Ants/metabolism , Arthropod Antennae/metabolism , Insect Proteins/metabolism , Animals , Chemoreceptor Cells/physiology , Gene Expression Regulation/physiology , Hydrogen-Ion Concentration , Insect Proteins/chemistry , Protein Binding , Protein Transport
10.
Sci Rep ; 9(1): 12759, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31485001

ABSTRACT

For baby odor analyses, noninvasive, stress-free sample collection is important. Using a simple method, we succeeded in obtaining fresh odors from the head of five newborn babies. These odors were chemically analyzed by two-dimensional gas chromatography coupled with mass spectrometry (GC × GC-MS), and compared with each other or with the odor of amniotic fluid from the baby's mother. We identified 31 chemical components of the volatile odors from neonate heads and 21 from amniotic fluid. Although 15 of these components were common to both sources, there was an apparent difference in the GC × GC patterns between the head and amniotic fluid odors, so the neonate head odor might be individually distinct immediately after birth. Therefore, we made artificial mixtures of the major odor components of the neonate head and maternal amniotic fluid, and used psychological tests to examine whether or not these odors could be distinguished from each other. Our data show that the artificial odor of a neonate head could be distinguished from that of amniotic fluid, and that the odors of artificial head odor mixtures could be correctly discriminated for neonates within an hour after birth and at 2 or 3 days of age.


Subject(s)
Amniotic Fluid , Head , Odorants/analysis , Specimen Handling , Female , Humans , Infant, Newborn , Male
11.
Front Cell Neurosci ; 12: 310, 2018.
Article in English | MEDLINE | ID: mdl-30283303

ABSTRACT

Ants are known to use a colony-specific blend of cuticular hydrocarbons (CHCs) as a pheromone to discriminate between nestmates and non-nestmates and the CHCs were sensed in the basiconic type of antennal sensilla (S. basiconica). To investigate the functional design of this type of antennal sensilla, we observed the ultra-structures at 2D and 3D in the Japanese carpenter ant, Camponotus japonicus, using a serial block-face scanning electron microscope (SBF-SEM), and conventional and high-voltage transmission electron microscopes. Based on the serial images of 352 cross sections of SBF-SEM, we reconstructed a 3D model of the sensillum revealing that each S. basiconica houses > 100 unbranched dendritic processes, which extend from the same number of olfactory receptor neurons (ORNs). The dendritic processes had characteristic beaded-structures and formed a twisted bundle within the sensillum. At the "beads," the cell membranes of the processes were closely adjacent in the interdigitated profiles, suggesting functional interactions via gap junctions (GJs). Immunohistochemistry with anti-innexin (invertebrate GJ protein) antisera revealed positive labeling in the antennae of C. japonicus. Innexin 3, one of the five antennal innexin subtypes, was detected as a dotted signal within the S. basiconica as a sensory organ for nestmate recognition. These morphological results suggest that ORNs form an electrical network via GJs between dendritic processes. We were unable to functionally certify the electric connections in an olfactory sensory unit comprising such multiple ORNs; however, with the aid of simulation of a mathematical model, we examined the putative function of this novel chemosensory information network, which possibly contributes to the distinct discrimination of colony-specific blends of CHCs or other odor detection.

12.
Exp Neurol ; 300: 51-59, 2018 02.
Article in English | MEDLINE | ID: mdl-29092799

ABSTRACT

Autism spectrum disorder (ASD) is characterized by persistent deficits in social communication and social interactions, as well as restricted, stereotyped patterns of behavior and interests. In addition, alterations in circadian sleep-wake rhythm are common in young children with ASD. Mutations in ATP binding cassette subfamily A member 13 (ABCA13) have been recently identified in a monkey that displays behavior associated with ASD. ABCA13, a member of the ABCA family of proteins, is predicted to transport lipid molecules and is expressed in the human trachea, testis, bone marrow, hippocampus, cortex, and other tissues. However, its physiological function remains unknown. Drosophila CG1718 shows high homology to human ABCA genes including ABCA13 and is thus designated as Drosophila ABCA (dABCA). To elucidate the physiological role of dABCA, we specifically knocked down dABCA in all neurons of flies and investigated their phenotypes. The pan-neuron-specific knockdown of dABCA resulted in increased social space with the closest neighbor in adult male flies but exerted no effect on their climbing ability, indicating that the increase in social space is not due to a defect in their climbing ability. An activity assay with adult male flies revealed that knockdown of dABCA in all neurons induces early onset of evening activity in adult flies followed by relatively high activity during morning peaks, evening peaks, and midday siesta. These phenotypes are similar to defects observed in human ASD patients, suggesting that the established dABCA knockdown flies are a promising model for ASD. In addition, an increase in satellite boutons in presynaptic terminals of motor neurons was observed in dABCA knockdown third instar larvae, suggesting that dABCA regulates the formation and/or maintenance of presynaptic terminals of motor neurons.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Autism Spectrum Disorder/genetics , Disease Models, Animal , Gene Targeting/methods , Locomotion/genetics , ATP-Binding Cassette Transporters/antagonists & inhibitors , Amino Acid Sequence , Animals , Animals, Genetically Modified , Circadian Rhythm/genetics , Drosophila , Gene Knockdown Techniques/methods , Humans , Male
13.
Sci Rep ; 7(1): 14763, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29116191

ABSTRACT

Organisms have developed behavioral strategies to defend themselves from starvation stress. Despite of their importance in nature, the underlying mechanisms have been poorly understood. Here, we show that Drosophila G9a (dG9a), one of the histone H3 Lys 9-specific histone methyltransferases, functions as a key regulator for the starvation-induced behaviors. RNA-sequencing analyses utilizing dG9a null mutant flies revealed that the expression of some genes relating to gustatory perception are regulated by dG9a under starvation conditions. Reverse transcription quantitative-PCR analyses showed that the expression of gustatory receptor genes for sensing sugar are up-regulated in starved dG9a null mutant. Consistent with this, proboscis extension reflex tests indicated that dG9a depletion increased the sensitivity to sucrose under starvation conditions. Furthermore, the locomotion activity was promoted in starved dG9a null mutant. We also found that dG9a depletion down-regulates the expression of insulin-like peptide genes that are required for the suppression of starvation-induced hyperactivity. Furthermore, refeeding of wild type flies after starvation conditions restores the hyperactivity and increased sensitivity to sucrose as well as dG9a expression level. These data suggest that dG9a functions as a key regulator for the decision of behavioral strategies under starvation conditions.


Subject(s)
Behavior, Animal , Drosophila melanogaster/physiology , Histone Methyltransferases/metabolism , Starvation , Stress, Physiological , Animals , Drosophila melanogaster/genetics , Epigenesis, Genetic , Insulin/metabolism , Mutation , Peptides/genetics , Peptides/metabolism , Reverse Transcriptase Polymerase Chain Reaction
14.
Article in English | MEDLINE | ID: mdl-26648851

ABSTRACT

The flowers of different plant species have diverse scents with varied chemical compositions. Hence, every floral scent does not uniformly affect insect feeding preferences. The blowfly, Phormia regina, is a nectar feeder, and when a fly feeds on flower nectar, its olfactory organs, antennae, and maxillary palps are exposed to the scent. Generally, feeding preference is influenced by food flavor, which relies on both taste and odor. Therefore, the flies perceive the sweet taste of nectar and the particular scent of the flower simultaneously, and this olfactory information affects their feeding preference. Here, we show that the floral scents of 50 plant species have various effects on their sucrose feeding motivation, which was evaluated using the proboscis extension reflex (PER). Those floral scents were first categorized into three groups, based on their effects on the PER threshold sucrose concentration, which indicates whether a fly innately dislikes, ignores, or likes the target scent. Moreover, memory of olfactory experience with those floral scents during sugar feeding influenced the PER threshold. After feeding on sucrose solutions flavored with floral scents for 5 days, the scents did not consistently show the previously observed effects. Considering such empirical effects of scents on the PER threshold, we categorized the effects of the 50 tested floral scents on feeding preference into 16 of all possible 27 theoretical types. We then conducted the same experiments with flies whose antennae or maxillary palps were ablated prior to PER test in a fly group naïve to floral scents and prior to the olfactory experience during sugar feeding in the other fly group in order to test how these organs were involved in the effect of the floral scent. The results suggested that olfactory inputs through these organs play different roles in forming or modifying feeding preferences. Thus, our study contributes to an understanding of underlying mechanisms associated with the convergent processing of olfactory inputs with taste information, which affects feeding preference or appetite.

15.
Zoological Lett ; 1: 35, 2015.
Article in English | MEDLINE | ID: mdl-26649188

ABSTRACT

Recently, dRYamides-1 and -2 have been identified as ligands of the neuropeptide Y-like receptor CG5811 in Drosophila melanogaster. It has also been reported in brief that injection of dRYamide-1suppresses the early feeding behavior called proboscis extension reflex (PER) in the blowfly Phormia regina. Immunohistochemical analyses by our group using anti-dRYamide-1 antiserum indicated symmetrical localization of 32 immunoreactive cells in the brain of P. regina. In order to analyze the mechanism of feeding regulation, we further investigated the effects of dRYamide-1 and -2 on intake volume, PER exhibition, and activity of the sugar receptor neuron. After injection of dRYamide-1 or -2, flies showed little change in the intake volume of sucrose solution, but a significant depression of PER to sucrose. Injection of dRYamide-1 revealed a significant decrease in the responsiveness of the sugar receptor neuron, although the injection of dRYamide-2 did not. These results suggest that the dRYamide peptides decrease feeding motivation in flies, as evaluated by PER threshold, through a mechanism that partially involves desensitization of the sugar receptor neuron.

16.
Sci Rep ; 5: 13541, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26310137

ABSTRACT

Chemical communication is essential for the coordination of complex organisation in ant societies. Recent comparative genomic approaches have revealed that chemosensory genes are diversified in ant lineages, and suggest that this diversification is crucial for social organisation. However, how such diversified genes shape the peripheral chemosensory systems remains unknown. In this study, we annotated and analysed the gene expression profiles of chemosensory proteins (CSPs), which transport lipophilic compounds toward chemosensory receptors in the carpenter ant, Camponotus japonicus. Transcriptome analysis revealed 12 CSP genes and phylogenetic analysis showed that 3 of these are lineage-specifically expanded in the clade of ants. RNA sequencing and real-time quantitative polymerase chain reaction revealed that, among the ant specific CSP genes, two of them (CjapCSP12 and CjapCSP13) were specifically expressed in the chemosensory organs and differentially expressed amongst ant castes. Furthermore, CjapCSP12 and CjapCSP13 had a ratio of divergence at non-synonymous and synonymous sites (dN/dS) greater than 1, and they were co-expressed with CjapCSP1, which is known to bind cuticular hydrocarbons. Our results suggested that CjapCSP12 and CjapCSP13 were functionally differentiated for ant-specific chemosensory events, and that CjapCSP1, CjapCSP12, and CjapCSP13 work cooperatively in the antennal chemosensilla of worker ants.


Subject(s)
Ants/genetics , Arthropod Antennae/metabolism , Evolution, Molecular , Insect Proteins/genetics , Sequence Analysis, RNA/methods , Amino Acid Sequence , Animals , Female , Gene Expression Profiling , Gene Expression Regulation , Genes, Insect , Hierarchy, Social , In Situ Hybridization, Fluorescence , Insect Proteins/chemistry , Insect Proteins/metabolism , Male , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics
17.
Chem Senses ; 39(5): 391-401, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24718417

ABSTRACT

In flies, the maxillary palp possesses olfactory sensilla housing olfactory receptor neurons (ORNs), which project to the primary olfactory center, the antennal lobes (ALs). The labellum possesses gustatory sensilla housing gustatory receptor neurons (GRNs), which project to the primary gustatory center, the subesophageal ganglion (SOG). Using an anterograde staining method, we investigated the axonal projections of sensory receptor neurons from the maxillary palp and labellum to the SOG or other parts of brain in the blowfly, Phormia regina. We show that maxillary mechanoreceptor neurons and some maxillary ORNs project to the SOG where they establish synapses, whereas other maxillary ORNs terminate in the ipsi- and contralateral ALs. The labellar GRNs project to the SOG, and some of these neural projections partially overlap with ORN terminals from the maxillary palp. Based on these anterograde staining data and 3D models of the observed axonal projections, we suggest that interactions occur between GRNs from the labellum and ORNs from the maxillary palp. These observations strongly suggest that olfactory information from the maxillary palp directly interacts with the processing of gustatory information within the SOG of flies.


Subject(s)
Diptera/physiology , Ganglia, Invertebrate/physiology , Olfactory Receptor Neurons/physiology , Sensory Receptor Cells/metabolism , Animals , Axons , Brain/metabolism , Feeding Behavior , Ganglia, Invertebrate/anatomy & histology , Octanols , Odorants , Plant Nectar , Sensilla , Sucrose
18.
Insects ; 5(4): 722-41, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-26462936

ABSTRACT

Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of "pre-filter mechanism", posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an "aggressive-behavior-switching center", where the response is generated if the signal is above a certain threshold.

19.
PLoS One ; 7(10): e46840, 2012.
Article in English | MEDLINE | ID: mdl-23115632

ABSTRACT

BACKGROUND: Territorial boundaries between conspecific social insect colonies are maintained through nestmate recognition systems. However, in supercolony-forming ants, which have developed an extraordinary social organization style known as unicoloniality, a single supercolony extends across large geographic distance. The underlying mechanism is considered to involve less frequent occurrence of intraspecific aggressive behaviors, while maintaining interspecific competition. Thus, we examined whether the supercolony-forming species, Formica yessensis has a nestmate recognition system similar to that of the multicolonial species, Camponotus japonicus with respect to the cuticular hydrocarbon-sensitive sensillum (CHC sensillum), which responds only to non-nestmate CHCs. We further investigated whether the sensory system reflects on the apparent reduced aggression between non-nestmates typical to unicolonial species. METHODOLOGY/PRINCIPAL FINDINGS: F. yessensis constructs supercolonies comprising numerous nests and constitutes the largest supercolonies in Japan. We compared the within-colony or between-colonies' (1) similarity in CHC profiles, the nestmate recognition cues, (2) levels of the CHC sensillar response, (3) levels of aggression between workers, as correlated with geographic distances between nests, and (4) their genetic relatedness. Workers from nests within the supercolony revealed a greater similarity of CHC profiles compared to workers from colonies outside it. Total response of the active CHC sensilla stimulated with conspecific alien CHCs did not increase as much as in case of C. japonicus, suggesting that discrimination of conspecific workers at the peripheral system is limited. It was particularly limited among workers within a supercolony, but was fully expressed for allospecific workers. CONCLUSIONS/SIGNIFICANCE: We demonstrate that chemical discrimination between nestmates and non-nestmates in F. yessensis was not clear cut, probably because this species has only subtle intraspecific differences in the CHC pattern that typify within a supercolony. Such an incomplete chemical discrimination via the CHC sensilla is thus an important factor contributing to decreased occurrence of intraspecific aggressive behavior especially within a supercolony.


Subject(s)
Ants/physiology , Behavior, Animal , Hydrocarbons/metabolism , Aggression , Animals , Ants/genetics , Microscopy, Electron, Scanning
20.
J Neurogenet ; 26(2): 206-15, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22794108

ABSTRACT

Animals increase their feeding motivation under starved conditions. Here the authors test if the starvation-induced increase of feeding motivation is different among wild-derived strains of Drosophila melanogaster. In behavioral experiments comparing the feeding behaviors of the strains Mel6 and TW1, only TW1 exhibited a decreased feeding threshold to sucrose following a 24-h starvation period. Starved TW1 preferably ingested a low concentration of sucrose. Starved TW1 also exhibited significant elevation of taste responsiveness to low concentrations of sucrose and enhanced expression of the Gr64a sucrose sugar receptor gene. TW1 survived longer than Mel6 when provided a less nutritious food (10 mM sucrose). Thus, the starvation-induced decrease in the behavioral and the sensory thresholds could be an advantage in searching for and utilizing less nutritious foods. These results show that the starvation-induced functional change in the taste sensory system is a possible strategy for survival during starvation or suboptimal nutrient periods.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Food Preferences/physiology , Gene Expression Regulation/physiology , Receptors, Cell Surface/metabolism , Starvation/physiopathology , Animals , Behavior, Animal , Carbohydrates/pharmacology , Dose-Response Relationship, Drug , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Feeding Behavior/drug effects , Feeding Behavior/physiology , Female , Food Preferences/drug effects , Gene Expression Regulation/drug effects , RNA, Messenger/metabolism , Receptors, Cell Surface/genetics , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Species Specificity , Starvation/mortality , Sucrose/administration & dosage , Sugar Acids , Survival Analysis , Sweetening Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...