Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Metallomics ; 16(2)2024 02 07.
Article in English | MEDLINE | ID: mdl-38183277

ABSTRACT

Nowadays, cancer represents one of the major causes of death in humans worldwide, which renders the quest for new and improved antineoplastic agents to become an urgent issue in the field of biomedicine and human health. The present research focuses on the synthesis of 2,3,2',3'-tetra(pyridin-2-yl)-6,6'-biquinoxaline) and (2,3,2',3'-tetra(thiophen-2-yl)-6,6'-biquinoxaline) containing copper(II) and platinum(II) compounds as prodrug candidates. The binding interaction of these compounds with calf thymus DNA (CT-DNA) and human serum albumin were assessed with UV titration, thermal decomposition, viscometric, and fluorometric methods. The thermodynamical parameters and the temperature-dependent binding constant (K'b) values point out to spontaneous interactions between the complexes and CT-DNA via the van der Waals interactions and/or hydrogen bonding, except Cu(ttbq)Cl2 for which electrostatic interaction was proposed. The antitumor activity of the complexes against several human glioblastomata, lung, breast, cervix, and prostate cell lines were investigated by examining cell viability, oxidative stress, apoptosis-terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, in vitro migration and invasion, in vitro-comet DNA damage, and plasmid DNA interaction assays. The U87 and HeLa cells were investigated as the cancer cells most sensitive to our complexes. The exerted cytotoxic effect of complexes was attributed to the formation of the reactive oxygen species in vitro. It is clearly demonstrated that Cu(ttbq)Cl2, Pt(ttbq)Cl2, and Pt(tpbq)Cl2 have the highest DNA degradation potential and anticancer effect among the tested complexes by leading apoptosis. The wound healing and invasion analysis results also supported the higher anticancer activity of these two compounds.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Humans , HeLa Cells , Copper/pharmacology , Copper/chemistry , Platinum/pharmacology , DNA/metabolism , Antineoplastic Agents/chemistry , Apoptosis , Ligands , Coordination Complexes/chemistry
2.
Chem Biol Drug Des ; 90(2): 210-224, 2017 08.
Article in English | MEDLINE | ID: mdl-28079299

ABSTRACT

Here, we describe the characteristics of a Pt-blue complex [Pt4 (2-atp)8 (H2 O)(OH)] (2-atp: 2-aminothiophenol) as a prodrug for its DNA-binding properties and its use in cancer therapy. The nature of the interaction between the Pt-blue complex and DNA was evaluated based on spectroscopic measurements, the electronic absorption spectra, thermal behavior, viscosity, fluorometric titration, and agarose gel electrophoresis. Our results suggested that the compound was able to partially intercalate DNA and appeared to induce both single- and double-stranded breaks (DBS) on DNA in vitro, but no DSBs in cells. The ability of the compound to induce DNA damage was dependent on reactive oxygen species (ROS) in vitro. There was also elevated formation of ROS and SOD expression in response to drug treatment in cell culture. The complex was found to be more cytotoxic to cancer cells in comparison with noncancer controls using WST-1 assay. The mean of cell death was determined to be apoptosis as assessed via biochemical, morphological, and molecular observations, including DNA condensation/fragmentation analysis, live cell imaging microscopy, TUNEL analyses, and increase in the levels of pro-apoptotic genes such as Bag3, Bak, Bik, Bmf, and Hrk. Hence, the Pt-blue complex under study grants premise for further studies.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , DNA Damage/drug effects , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Cell Line, Tumor , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Reactive Oxygen Species/metabolism
3.
Chemistry ; 14(11): 3418-26, 2008.
Article in English | MEDLINE | ID: mdl-18293353

ABSTRACT

The synthesis and biological activity of three heteronuclear platinum-copper complexes based on 3-Clip-Phen are reported. These rigid complexes have been designed to alter the intrinsic mechanism of action of both the platinum moiety and the Cu(3-Clip-Phen) unit. The platinum centers of two of these complexes are coordinated to a 3-Clip-Phen moiety, an ammine ligand and two chlorides, which are either cis or trans to each other. The third complex comprises two 3-Clip-Phen units and two chloride ligands bound in a trans fashion to the platinum ion. DNA-cleavage experiments show that the complexes are highly efficient nuclease agents. In addition, a markedly difference in their aptitude to perform direct double-strand cleavage is observed, which appears to be strongly related to the ability of the platinum unit to coordinate to DNA. Indeed, complex 6 is unable to coordinate to DNA, which is reflected by its incapability to carry out double-strand breaks. Nonetheless, this complex exhibits efficient DNA-cleavage activity, and its cytotoxicity is high for several cell lines. Complex 6 shows better antiproliferate activity than both cisplatin and Cu(3-Clip-Phen) toward most cancer cell lines. Furthermore, the cytotoxicity observed for 1 is for most cell lines close to that of cisplatin, or even better. Cu(3-Clip-Phen) induces very low cytotoxic effects, but a marked migratory activity. Complex 6 presents DNA-cleavage properties comparable to the one of Cu(3-Clip-Phen), but it does not show any migratory activity. Interestingly, both Cu(3-Clip-Phen) and 6 induces vacuolisation processes in the cell in contrast to complex 1 and cisplatin. Thus, the four complexes cisplatin tested, Cu(3-Clip-Phen), 1 and 6 stimulate different cellular responses.


Subject(s)
Antineoplastic Agents/chemistry , Copper/chemistry , DNA, Viral/chemistry , Platinum/chemistry , Bacteriophage phi X 174/genetics , Base Sequence , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Hydrolysis , Magnetic Resonance Spectroscopy
4.
Chemistry ; 13(18): 5213-22, 2007.
Article in English | MEDLINE | ID: mdl-17385761

ABSTRACT

The zinc(II) complexes reported here have been synthesised from the ligand 4-methyl-2-N-(2-pyridylmethyl)aminophenol (Hpyramol) with chloride or acetate counterions. All the five complexes have been structurally characterised, and the crystal structures reveal that the ligand Hpyramol gradually undergoes an oxidative dehydrogenation to form the ligand 4-methyl-2-N-(2-pyridylmethylene)aminophenol (Hpyrimol), upon coordination to Zn(II). All the five complexes cleave the phiX174 phage DNA oxidatively and the complexes with fully dehydrogenated pyrimol ligands were found to be more efficient than the complexes with non-dehydrogenated Hpyramol ligands. The DNA cleavage is suggested to be ligand-based, whereas the pure ligands alone do not cleave DNA. The DNA cleavage is strongly suggested to be oxidative, possibly due to the involvement of a non-diffusible phenoxyl radical mechanism. The enzymatic religation experiments and DNA cleavage in the presence of different radical scavengers further support the oxidative DNA cleavage by the zinc(II) complexes.


Subject(s)
Aminophenols/chemistry , DNA Cleavage , DNA/chemistry , Organometallic Compounds/chemical synthesis , Oxidants/chemistry , Zinc/chemistry , Acetates/chemistry , Bacteriophage phi X 174/chemistry , Bacteriophage phi X 174/metabolism , Cations, Divalent , Chlorides/chemistry , Crystallography, X-Ray , DNA/metabolism , Electrochemistry , Free Radical Scavengers/chemistry , Hydrogen/chemistry , Ligands , Models, Chemical , Oxidation-Reduction , Phenols/chemistry
5.
Dalton Trans ; (21): 3535-41, 2005 Nov 07.
Article in English | MEDLINE | ID: mdl-16234935

ABSTRACT

A copper(II) neocuproine system has been developed for the efficient and very selective 1,6-addition of a nucleophile to the para-methyl group of 2,4,6-trimethylphenol. Crystallographic and spectroscopic data point towards the involvement of a micro-methoxo-micro-phenoxo-bridged copper species which appears to generate a highly reactive quinone methide intermediate that can be attacked by a nucleophilic reagent.


Subject(s)
Copper/chemistry , Cresols/chemistry , Crystallography, X-Ray , Methanol/chemistry , Methylation , Models, Molecular , Molecular Structure , Oxidation-Reduction , Phenols/chemistry , Solutions , Spectrum Analysis
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 62(1-3): 716-20, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15876549

ABSTRACT

Nickel(II) complexes of a series of N,N'-polymethylenebis(3,5-Bu(2)(t)-salicylaldimine) ligands containing 2,4-di-Bu(2)(t)-phenol arms, NiL(x), were synthesized and their spectroscopic and redox properties were examined. The UV-vis, (1)H NMR spectroscopic and magnetic results indicate that complexes NiL(1)-NiL(4) unlike NiL(5) and NiL(6) have a square-planar structure in the solid state and in solution. Cyclic voltammograms of NiL(x) (x=1-4) complexes displayed two-step oxidation processes. The first oxidation peak potentials of all Ni(II) complexes corresponds to the reversible one-electron oxidation process of the metal center, yielding Ni(III) species. The second oxidation peak of the complexes was assigned as the ligand based oxidation generating a coordinated phenoxyl radical species.


Subject(s)
Aldehydes/chemistry , Nickel , Schiff Bases/chemistry , Electrochemistry/methods , Models, Molecular , Oxidation-Reduction , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL