Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36985207

ABSTRACT

Green algae produce valuable lipids as carbon-recycling resources. Collecting whole cells with the intracellular lipids could be efficient without cell burst; however, direct use of the cells causes microbial contamination in environments. Then, UV-C irradiation was selected to satisfy the requirements of avoiding the cell burst and sterilizing cells with Chlamydomonas reinhardtii. UV-C irradiation with 1.209 mW·cm-2 showed enough sterilization activity for 1.6 × 107 cells·mL-1 of C. reinhardtii in a depth of 5 mm for 10 min. The irradiation showed no effects to composition and contents of the intracellular lipids. From the viewpoint of transcriptomic analysis, the irradiation displayed possibilities of (i) inhibition of the synthesis of lipids due to decrement of the transcription of related genes, such as diacylglycerol acyl transferase and cyclopropane fatty acid synthase, and (ii) activation of lipid degradation and the production of NADH2+ and FADH2 due to increment of the transcription of related genes, such as isocitrate dehydrogenase, dihydrolipoamide dehydrogenase and malate dehydrogenase. Irradiation until cell death could be insufficient to shift the metabolic flows even though the transcriptions were already shifted to lipid degradation and energy production. This paper is the first report of the response of C. reinhardtii to UV-C irradiation on the transcription level.

2.
Appl Microbiol Biotechnol ; 106(12): 4459-4468, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35676378

ABSTRACT

Cell plastics in this study were fabricated with only unicellular green alga Chlamydomonas reinhardtii as raw materials. The sizes of cell-major axis as structures were 8.4 ± 1.2 µm, and the aspect ratios of those were 1.2 ± 0.1, showing homogeneous particle size. After optimizing extraction condition of intracellular contents, cell plastics were fabricated with the cells as ingredient components and the intracellular contents as matrix components. Those cell plastics were observed with scanning electron microscopy, displaying the smooth surfaces of the cell plastics at a low magnification level. However, the surface, especially exposed surface, were rough at high magnification level. Tensile strength test revealed that increasing the ratio of intracellular contents in the cell plastics until 21% led enhancing mechanical properties of Young's modulus and tensile strength; however, 25% of intracellular contents displayed decreases of those properties. As the optimal point, the cell plastic (21%), which contained 21% (w/w) of intracellular contents in cell plastics, showed 764 ± 100 MPa and 8.6 ± 5.2 MPa of Young's modulus and tensile strength. The cell plastics showed few plastic region and soon fractured, indicating the possibility that cells and intracellular contents could be electrostatically connected. Additionally, cells were shown as a negative charge and displayed the possibility to contribute electrically cell-gathering with intracellular ionic components. Therefore, cells and intracellular contents containing ionic metabolites could be electrostatically connected for giving the mechanical strength to cell plastics. In this study, we successfully demonstrated fabricating cell plastics with only cells for the first time and also showed the high possibility of conjugating each cell with the intracellular contents. KEY POINTS: • Cell plastics are fabricated with unicellular green algal cell directly. • Unicellular cells required to be conjugated for the fabrication with matrix. • Cells were conjugated with intracellular contents for cell-plastic fabrication.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolism , Microscopy, Electron, Scanning , Particle Size , Plastics/metabolism , Tensile Strength
3.
AMB Express ; 10(1): 112, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32524300

ABSTRACT

Green alga Chlamydomonas reinhardtii has gained interest as a sustainable resource because it can be easily grown using CO2 as a carbon source owing to its high CO2 assimilating activity. Although the robustness of the cell wall of C. reinhardtii makes it difficult to extract its intracellular products, such property is beneficial when using the cell as an ingredient to fabricate "cell-plastic" in this study. The cell layer, which is a component of the cell-plastic, was prepared with an intercellular filler to connect each cell because C. reinhardtii is a single-cell strain. The cell layers were then repeatedly piled to increase the strength of the cell-plastic. To avoid slippage between the cell layers, they were covered with a small amount of a two-dimensional polymer to maintain the flat surface structure of the cell-plastic. Based on the evaluation, the cell-plastic has the potential to be a novel, sustainable plastic using ubiquitous green algal cells in nature.

SELECTION OF CITATIONS
SEARCH DETAIL
...