Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Signal Behav ; 10(12): e1103406, 2015.
Article in English | MEDLINE | ID: mdl-26451896

ABSTRACT

The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 µSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 µSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Gamma Rays , Oryza/metabolism , Plant Leaves/metabolism , Plant Leaves/radiation effects , Proteome/metabolism , Seedlings/metabolism , Down-Regulation/radiation effects , Fluorescent Dyes/metabolism , Japan , Oryza/radiation effects , Plant Proteins/metabolism , Seedlings/radiation effects , Up-Regulation/radiation effects
2.
J Hered ; 105(5): 723-38, 2014.
Article in English | MEDLINE | ID: mdl-25124817

ABSTRACT

In the summer of 2012, 1 year after the nuclear accident in March 2011 at the Fukushima Daiichi nuclear power plant, we examined the effects of gamma radiation on rice at a highly contaminated field of Iitate village in Fukushima, Japan. We investigated the morphological and molecular changes on healthy rice seedlings exposed to continuous low-dose gamma radiation up to 4 µSv h(-1), about 80 times higher than natural background level. After exposure to gamma rays, expression profiles of selected genes involved in DNA replication/repair, oxidative stress, photosynthesis, and defense/stress functions were examined by RT-PCR, which revealed their differential expression in leaves in a time-dependent manner over 3 days (6, 12, 24, 48, and 72 h). For example, OsPCNA mRNA rapidly increased at 6, 12, and 24 h, suggesting that rice cells responded to radiation stress by activating a gene involved in DNA repair mechanisms. At 72 h, genes related to the phenylpropanoid pathway (OsPAL2) and cell death (OsPR1oa) were strongly induced, indicating activation of defense/stress responses. We next profiled the transcriptome using a customized rice whole-genome 4×44K DNA microarray at early (6h) and late (72 h) time periods. Low-level gamma radiation differentially regulated rice leaf gene expression (induced 4481 and suppressed 3740 at 6 h and induced 2291 and suppressed 1474 genes at 72 h) by at least 2-fold. Using the highly upregulated and downregulated gene list, MapMan bioinformatics tool generated diagrams of early and late pathways operating in cells responding to gamma ray exposure. An inventory of a large number of gamma radiation-responsive genes provides new information on novel regulatory processes in rice.


Subject(s)
Fukushima Nuclear Accident , Gamma Rays/adverse effects , Gene Expression Regulation, Plant/radiation effects , Oryza/genetics , Plant Leaves/genetics , Seedlings/genetics , Computational Biology , Dose-Response Relationship, Radiation , Japan , Oligonucleotide Array Sequence Analysis , Oryza/radiation effects , Plant Leaves/radiation effects , Quality Control , RNA, Plant/genetics , Radioactive Pollutants/toxicity , Reverse Transcriptase Polymerase Chain Reaction , Seedlings/radiation effects
3.
Health Phys ; 102(6): 680-6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22549322

ABSTRACT

Following the news that the radiation level in Iitate Village, located 25-45 km from the Fukushima Daiichi Nuclear Power Plant, was seriously increased, an urgent field survey was carried out on 28 and 29 March 2011. Radiation levels at 130 locations were measured inside a van that traveled throughout the village using a CsI pocket survey meter and an ionization chamber. Soil samples were also taken at five locations and submitted to gamma ray analysis using a Ge detector. A radiation exposure rate of more than 20 µSv h was observed in the southern part of Iitate Village. Volatile radionuclides such as iodine and cesium were found to be the main components of radioactive contamination. A trace amount of plutonium isotopes originating from the accident was also confirmed in several soil samples, the level of which was less than the global fallout. Based on the measured density of radionuclides at the highest contamination location during the present survey, an exposure rate of about 200 µGy h at 1 m above the ground was estimated at the time of the radioactive deposition on March 15. At this location, the cumulative exposure would reach 50 mGy in the middle of May 2011.


Subject(s)
Data Collection , Nuclear Power Plants , Radiation Monitoring , Radioactive Fallout/analysis , Radioactive Hazard Release , Environmental Exposure/analysis , Japan , Radiation Dosage , Radiation Monitoring/instrumentation , Radioisotopes/analysis , Soil/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...