Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sens Diagn ; 2(4): 948-955, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-38405385

ABSTRACT

Detecting bacterial cells with high specificity in deep tissues is challenging. Optical probes provide specificity, but are limited by the scattering and absorption of light in biological tissues. Conversely, magnetic resonance imaging (MRI) allows unfettered access to deep tissues, but lacks contrast agents for detecting specific bacterial strains. Here, we introduce a biomolecular platform that combines both capabilities by exploiting the modularity of M13 phage to target bacteria with tunable specificity and allow deep-tissue imaging using T1-weighted MRI. We engineered two types of phage probes: one for detecting the phage's natural host, viz., F-pilus expressing E. coli; and the other for detecting a different (F-negative) bacterial target, V. cholerae. We show that these phage sensors generate 3-9-fold stronger T1 relaxation upon recognizing target cells relative to non-target bacteria. We further establish a preliminary proof-of-concept for in vivo applications, by demonstrating that phage-labeled bacteria can be detected in mice using MRI. The framework developed in this study may have potential utility in a broad range of applications, from basic biomedical research to in situ diagnostics, which require methods to detect and track specific bacteria in the context of intact living systems.

2.
ACS Sens ; 6(9): 3163-3169, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34420291

ABSTRACT

Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer a promising approach for noninvasive brain-wide monitoring of neural activity at any arbitrary depth. Current examples of MRI-based calcium probes involve synthetic molecules and nanoparticles, which cannot be used to examine calcium signaling in a genetically encoded form. Here, we describe a new MRI sensor for calcium, based entirely on a naturally occurring calcium-binding protein known as calprotectin. Calcium-binding causes calprotectin to sequester manganese ions, thereby limiting Mn2+ enhanced paramagnetic relaxation of nearby water molecules. We demonstrate that this mechanism allows calprotectin to alter T1 and T2 based MRI signals in response to biologically relevant calcium concentrations. The resulting response amplitude, i.e., change in relaxation time, is comparable to existing MRI-based calcium sensors as well as other reported protein-based MRI sensors. As a preliminary demonstration of its biological applicability, we used calprotectin to detect calcium in a lysed hippocampal cell preparation as well as in intact Chinese hamster ovary cells treated with a calcium ionophore. Calprotectin thus represents a promising path toward noninvasive imaging of calcium signaling by combining the molecular and cellular specificity of genetically encodable tools with the ability of MRI to image through scattering tissue of any size and depth.


Subject(s)
Biosensing Techniques , Calcium , Animals , CHO Cells , Cricetinae , Cricetulus , Magnetic Resonance Imaging
3.
Chem Phys Rev ; 2(2): 021301, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34085055

ABSTRACT

Calcium ions represent one of the key second messengers accompanying neural activity and synaptic signaling. Accordingly, dynamic imaging of calcium fluctuations in living organisms represents a cornerstone technology for discovering neural mechanisms that underlie memory, determine behavior, and modulate emotional states as well as how these mechanisms are perturbed by neurological disease and brain injury. While optical technologies are well established for high resolution imaging of calcium dynamics, physical limits on light penetration hinder their application for whole-brain imaging in intact vertebrates. Unlike optics, magnetic resonance imaging (MRI) enables noninvasive large-scale imaging across vertebrates of all sizes. This has motivated the development of several sensors that leverage innovative physicochemical mechanisms to sensitize MRI contrast to intracellular and extracellular changes in calcium. Here, we review the current state-of-the-art in MRI-based calcium sensors, focusing on fundamental aspects of sensor performance, in vivo applications, and challenges related to sensitivity. We also highlight how innovations at the intersection of reporter gene technology and gene delivery open potential opportunities for mapping calcium activity in genetically targeted cells, complementing the benefits of small molecule probes and nanoparticle sensors.

4.
Bioconjug Chem ; 31(2): 293-302, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31794658

ABSTRACT

Fluorescence imaging represents cornerstone technology for studying biological function at the cellular and molecular levels. The technology's centerpiece is a prolific collection of genetic reporters based on the green fluorescent protein (GFP) and related analogs. More than two decades of protein engineering have endowed the GFP repertoire with an incredible assortment of fluorescent proteins, allowing scientists immense latitude in choosing reporters tailored to various cellular and environmental contexts. Nevertheless, GFP and derivative reporters have specific limitations that hinder their unrestricted use for molecular imaging. These challenges have inspired the development of new reporter proteins and imaging mechanisms. Here, we review how these developments are expanding the frontiers of reporter gene techniques to enable nondestructive studies of cell function in anaerobic environments and deep inside intact animals-two important biological contexts that are fundamentally incompatible with the use of GFP-based reporters.


Subject(s)
Green Fluorescent Proteins/analysis , Luminescent Agents/analysis , Optical Imaging/methods , Anaerobiosis , Animals , Genes, Reporter , Humans , Magnetic Resonance Imaging/methods , Microscopy, Fluorescence/methods , Molecular Imaging
5.
Protein Eng Des Sel ; 31(4): 103-108, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29660073

ABSTRACT

Enzymatic biocatalysis can be limited by the necessity of soluble cofactors. Here, we introduced PEGylated nicotinamide adenine dinucleotide (NAD(H)) swing arms to two covalently fused dehydrogenase enzymes to eliminate their nicotinamide cofactor requirements. A formate dehydrogenase and cytosolic malate dehydrogenase were connected via SpyCatcher-SpyTag fusions. Bifunctionalized polyethylene glycol chains tethered NAD(H) to the fusion protein. This produced a formate:malate oxidoreductase that exhibited cofactor-independent ping-pong kinetics with predictable Michaelis constants. Kinetic modeling was used to explore the effective cofactor concentrations available for electron transfer in the complexes. This approach could be used to create additional cofactor-independent transhydrogenase biocatalysts by swapping fused dehydrogenases.


Subject(s)
Formates/metabolism , Malates/metabolism , NAD/chemistry , NAD/metabolism , Oxidoreductases/genetics , Polyethylene Glycols/chemistry , Recombinant Fusion Proteins/genetics , Biocatalysis , Models, Molecular , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Protein Conformation , Protein Engineering , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...