Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 25(1): 170, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689247

ABSTRACT

BACKGROUND: Deep neural networks (DNNs) have the potential to revolutionize our understanding and treatment of genetic diseases. An inherent limitation of deep neural networks, however, is their high demand for data during training. To overcome this challenge, other fields, such as computer vision, use various data augmentation techniques to artificially increase the available training data for DNNs. Unfortunately, most data augmentation techniques used in other domains do not transfer well to genomic data. RESULTS: Most genomic data possesses peculiar properties and data augmentations may significantly alter the intrinsic properties of the data. In this work, we propose a novel data augmentation technique for genomic data inspired by biology: point mutations. By employing point mutations as substitutes for codons, we demonstrate that our newly proposed data augmentation technique enhances the performance of DNNs across various genomic tasks that involve coding regions, such as translation initiation and splice site detection. CONCLUSION: Silent and missense mutations are found to positively influence effectiveness, while nonsense mutations and random mutations in non-coding regions generally lead to degradation. Overall, point mutation-based augmentations in genomic datasets present valuable opportunities for improving the accuracy and reliability of predictive models for DNA sequences.


Subject(s)
Deep Learning , Genomics , Point Mutation , Genomics/methods , Humans , Reproducibility of Results , Neural Networks, Computer
2.
Sci Data ; 10(1): 716, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853038

ABSTRACT

Trypanosomiasis, a neglected tropical disease (NTD), challenges communities in sub-Saharan Africa and Latin America. The World Health Organization underscores the need for practical, field-adaptable diagnostics and rapid screening tools to address the negative impact of NTDs. While artificial intelligence has shown promising results in disease screening, the lack of curated datasets impedes progress. In response to this challenge, we developed the Tryp dataset, comprising microscopy images of unstained thick blood smears containing the Trypanosoma brucei brucei parasite. The Tryp dataset provides bounding box annotations for tightly enclosed regions containing the parasite for 3,085 positive images, and 93 images collected from negative blood samples. The Tryp dataset represents the largest of its kind. Furthermore, we provide a benchmark on three leading deep learning-based object detection techniques that demonstrate the feasibility of AI for this task. Overall, the availability of the Tryp dataset is expected to facilitate research advancements in diagnostic screening for this disease, which may lead to improved healthcare outcomes for the communities impacted.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Animals , Humans , Artificial Intelligence , Microscopy , Neglected Diseases , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/parasitology
3.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37225409

ABSTRACT

MOTIVATION: The primary regulatory step for protein synthesis is translation initiation, which makes it one of the fundamental steps in the central dogma of molecular biology. In recent years, a number of approaches relying on deep neural networks (DNNs) have demonstrated superb results for predicting translation initiation sites. These state-of-the art results indicate that DNNs are indeed capable of learning complex features that are relevant to the process of translation. Unfortunately, most of those research efforts that employ DNNs only provide shallow insights into the decision-making processes of the trained models and lack highly sought-after novel biologically relevant observations. RESULTS: By improving upon the state-of-the-art DNNs and large-scale human genomic datasets in the area of translation initiation, we propose an innovative computational methodology to get neural networks to explain what was learned from data. Our methodology, which relies on in silico point mutations, reveals that DNNs trained for translation initiation site detection correctly identify well-established biological signals relevant to translation, including (i) the importance of the Kozak sequence, (ii) the damaging consequences of ATG mutations in the 5'-untranslated region, (iii) the detrimental effect of premature stop codons in the coding region, and (iv) the relative insignificance of cytosine mutations for translation. Furthermore, we delve deeper into the Beta-globin gene and investigate various mutations that lead to the Beta thalassemia disorder. Finally, we conclude our work by laying out a number of novel observations regarding mutations and translation initiation. AVAILABILITY AND IMPLEMENTATION: For data, models, and code, visit github.com/utkuozbulak/mutate-and-observe.


Subject(s)
Neural Networks, Computer , Humans , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...