Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 12756, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35882909

ABSTRACT

Transition metal dichalcogenides (TMDs) receive significant attention due to their outstanding electronic and optical properties. In this study, we investigate the electronic, optical, and thermoelectric properties of single and few layer [Formula: see text] in detail utilizing first-principles methods based on the density functional theory (DFT). Within the scope of both PBE and HSE06 including spin orbit coupling (SOC), the simulations predict the electronic band gap values to decrease as the number of layers increases. Moreover, spin-polarized DFT calculations combined with the semi-classical Boltzmann transport theory are applied to estimate the anisotropic thermoelectric power factor (Seebeck coefficient, S) for [Formula: see text] in both the monolayer and multilayer limit, and S is obtained below the optimal value for practical applications. The optical absorbance of [Formula: see text] monolayer is obtained to be slightly less than the values reported in literature for 2H TMD monolayers of [Formula: see text], [Formula: see text], and [Formula: see text]. Furthermore, we simulate the impact of defects, such as vacancy, antisite and substitution defects, on the electronic, optical and thermoelectric properties of monolayer [Formula: see text]. Particularly, the Te-[Formula: see text] substitution defect in parallel orientation yields negative formation energy, indicating that the relevant defect may form spontaneously under relevant experimental conditions. We reveal that the electronic band structure of [Formula: see text] monolayer is significantly influenced by the presence of the considered defects. According to the calculated band gap values, a lowering of the conduction band minimum gives rise to metallic characteristics to the structure for the single Te(1) vacancy, a diagonal Te line defect, and the Te(1)-[Formula: see text] substitution, while the other investigated defects cause an opening of a small positive band gap at the Fermi level. Consequently, the real ([Formula: see text]) and imaginary ([Formula: see text]) parts of the dielectric constant at low frequencies are very sensitive to the applied defects, whereas we find that the absorbance (A) at optical frequencies is less significantly affected. We also predict that certain point defects can enhance the otherwise moderate value of S in pristine [Formula: see text] to values relevant for thermoelectric applications. The described [Formula: see text] monolayers, as functionalized with the considered defects, offer the possibility to be applied in optical, electronic, and thermoelectric devices.

2.
J Periodontal Implant Sci ; 52(3): 206-219, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35775696

ABSTRACT

PURPOSE: This study was performed to evaluate the influence of local application of thymoquinone (TQ) on bone healing in experimental bone defects infected with Porphyromonas gingivalis (PG). METHODS: Forty-two female rats were randomly divided into 6 groups. A bone defect was created on the right tibia of all animals. The PG, PG/collagen membrane (COL) and PG/TQ/COL groups were infected with PG. In the COL and PG/COL groups, the defects were covered with a COL; in the TQ/COL and PG/TQ/COL groups, the defects were covered with a TQ-containing COL. After 28 days, all animals were sacrificed. Quantitative measurements of new bone formation and osteoblast lining, as well as semiquantitative measurements of capillary density and tissue response, were analyzed. Furthermore, the presence of bacterial infections in defect areas was evaluated. RESULTS: The new bone formation, osteoblast number, and capillary density were significantly higher in the TQ groups than in the control groups (P<0.001, P<0.001, and P<0.01, respectively). In a comparison between the TQ/COL group, with a TQ-containing COL (TQ/COL), and the PG-infected TQ-containing COL (PG/TQ/COL) group, the newly formed bone and capillary density were higher in the TQ/COL group (P<0.01). When the control group was compared to the PG, PG/COL, and PG/TQ/COL groups in terms of tissue response, the differences were statistically significant (P<0.001, P=0.02, and P=0.041, respectively). The intensity of the inflammatory cell reaction was higher in the PG, PG/COL, and PG/TQ/COL groups (P<0.05). CONCLUSIONS: Within the limitations of this study, the local application of a TQ-containing COL positively affected bone healing even if the bone defects were infected. The results suggest that TQ increased angiogenesis and showed promise for accelerating bone defect healing. Further research is warranted to support these findings and reach more definitive conclusions.

3.
J Mol Graph Model ; 101: 107726, 2020 12.
Article in English | MEDLINE | ID: mdl-32920238

ABSTRACT

In this study, we investigated and revealed the electronic properties, geometric structures and binding behavior of small (IrO)n and [Formula: see text] (n = 1-5) clusters within first principles calculations based on the density functional theory. The electronic and magnetic properties of small nanoclusters displayed significant size dependency due to strong quantum confinement effect. Moreover we considered the binding and structural modification of the clusters on graphene surface as a substrate. The cohesive energy per atom of isolated clusters increased with size of the cluster n. This shows that the increase in coordination number results in a more stable nanocluster with increased number of saturated bonds. Pristine (IrO)n and [Formula: see text] clusters presented different structural motives at equilibrium. The ground states of (IrO)n and [Formula: see text] clusters considered in this study were all magnetic except for (IrO)4, [Formula: see text] , and [Formula: see text] . HOMO-LUMO gap EHLG values displayed large variations due to size of the cluster, hence bond saturation. The structural configurations of free standing nanoclusters are slightly modified, when adsorbed on graphene. The adsorption behavior of a cluster on graphene was improved by an applied electric field yielding larger binding energy and larger charger transfer. We observed that electronic and magnetic ground state of the clusters strongly depend on optimized structural configuration for both bare and adsorbed on graphene monolayer.


Subject(s)
Graphite , Electronics , Iridium , Magnetic Phenomena , Quantum Theory
4.
Radiology ; 297(1): E232-E235, 2020 10.
Article in English | MEDLINE | ID: mdl-32384020
5.
Phys Chem Chem Phys ; 22(8): 4561-4573, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32048686

ABSTRACT

Atomistic exploration and electronic modification of 2D materials have been a central focus of research since the breakthrough of graphene. In the present study, we introduce and reveal the structure, stability and electronic features of novel RhX3 (X: Cl, Br, I) monolayer systems within the framework of density functional theory. Phonon dispersion spectra and equilibrium molecular dynamics calculations confirm the stability of the phases studied at room and elevated temperatures. The structures are slightly modified because of thermal excitations and maintain their stabilities up to 1000 K. We show that the electronic and magnetic nature of pristine monolayers can be tuned by external effects, i.e. both mechanically and electrically. RhCl3, RhBr3 and RhI3 monolayers are nonmagnetic and indirect-gap semiconductors intrinsically, but display indirect-to-direct band gap transitions at particular strain values. The systems gain a net magnetic moment and are transformed into metals by negative charging. The optical properties, such as the absorption coefficient, optical conductivity, energy loss spectrum, refractive index and extinction coefficient, are also presented. This interesting class of nanomaterials are promising candidates for several applications in nanotechnology and optoelectronics with good thermal stability, mechanical flexibility, and tunable electronic properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...