Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Pharm Res ; 17(3): 1036-1046, 2018.
Article in English | MEDLINE | ID: mdl-30127826

ABSTRACT

In the present work we carried out a phytochemical and biological investigation on three endemic Hypericum species, i.e.Hypericum thymbrifolium (H. thymbrifolium), Hypericum spectabile (H. spectabile) and Hypericum pseudolaeve (H. pseudolaeve) from Anatolia in order to discover new sources of natural compounds for the treatment of inflammatory and neurodegenerative disorders. HPLC-DAD analysis indicated that two naphthodianthrones (pseudohypericin and hypericin) together with chlorogenic acid, rutin, hyperoside, isoquercitrin, kaempferol, quercitrin, quercetin, amentoflavone, and hyperforin are the main compounds present in the methanol extracts. After chemical characterization, all extracts were in-vitro biologically assayed for antioxidant potential by lipid peroxidation inhibitory activity, DPPH, FRAP assays, and superoxide radical scavenging activity, for AChE inhibitory activity by Ellman's method, for COX inhibitory activity by using enzyme immunoassay (EIA) kit, for cytotoxic activity on HeLa and NRK-52E cell lines by MTT assay. The superoxide radical scavenging activity and lipid peroxidation inhibitory activity of H. spectabile (EC50 = 0.430 mg/mL) were more remarkable than that of H. thymbrifolium and H. pseudolaeve. The extracts showed moderate inhibitory activity on AChE (from 49.37% to 63.41%). The best inhibitory activity against COX-1 (71.77% and 77.04%, respectively) and COX-2 ( 64.14% and 72.23%, respectively) were shown by H. thymbrifolium and H. spectabile, which may be due to their richest chlorogenic acid content (0.29576% and 0.23567%, respectively). Cytotoxicity screening results showed that the extracts did not demonstrate significant cytotoxic activity. It was concluded that the most promising extract with antioxidant, anti-inflammatory, and AChE inhibition potential is H. spectabile.

2.
Iran J Pharm Res ; 15(3): 393-405, 2016.
Article in English | MEDLINE | ID: mdl-27980574

ABSTRACT

This paper is the first phytochemical and ABTS cation radical decolorisation activity, cupric reducing antioxidant capacity, anticholinesterase and DNA damage protection effect of endemic Verbascum pinetorum (Boiss.) O. Kuntze. Phenolic profile of V. pinetorum were qualified and quantified by UHPLC-ESI-MS/MS analysis. Malic acid (47250.61±2504.28 µg/g) and luteolin (7651.96±527.98 µg/g) were found as most abundant compounds for metanol and acetone extracts, respectively. Fatty acid and essential oil compositions were determined by GC-MS analysis. The main components of fatty acid were found to be palmitic (27.1%) and stearic (22.1%) acids. The main compounds of the essential oil were cineole (16.9%) and α-selinene (16.4%). The acetone extract was found to be more active than BHT used as a standard in ß-carotene-linoleic acid test system. In DPPH free radical scavenging activity, the acetone and methanol extracts showed higher activity than BHT at all tested concentrations. The acetone, methanol and water extracts showed strong inhibition while the acetone extract showed better activity than BHT and α-tocopherol which were used as standards in ABTS cation radical scavenging and cupric reducing antioxidant capacity assays, respectively. All extracts were found to be inactive in antialzheimer activity. The acetone extract exhibited moderate antimicrobial activity against C. albicans. The methanol extract of V. pinetorum were found no significant effect on DNA cleavage protection.

3.
Biometals ; 24(5): 943-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21479831

ABSTRACT

In recent years, the role of free radical damage consequent to oxidative stress is widely discussed in diabetic complications. In this aspect, the protection of cell integrity by trace elements is a topic to be investigated. Vanadium is a trace element believed to be important for normal cell function and development. The aim of the present study was to investigate the effect of vanadyl sulfate supplementation on the antioxidant system in the muscle tissue of diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) to male Swiss albino rats. The rats were randomly divided into 4 groups: Group I, control; Group II, vanadyl sulfate control; Group III, STZ-diabetic untreated; Group IV, STZ-diabetic treated with vanadyl sulfate. Vanadyl sulfate (100 mg/kg) was given daily by gavage for 60 days. At the last day of the experiment, rats were killed, muscle tissues were taken, homogenized in cold saline to make a 10% (w/v) homogenate. Body weights and blood glucose levels were estimated at 0, 30 and 60th days. Antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), as well as carbonic anhydrase (CA), myeloperoxidase (MPO) activities and protein carbonyl content (PCC) were determined in muscle tissue. Vanadyl sulfate administration improved the loss in body weight due to STZ-induced diabetes and decreased the rise in blood glucose levels. It was shown that vanadium supplementation to diabetic rats significantly decrease serum antioxidant enzyme levels, which were significantly raised by diabetes in muscle tissue showing that this trace element could be used as preventive for diabetic complications.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Dietary Supplements , Muscle, Skeletal/drug effects , Oxidative Stress/drug effects , Vanadium Compounds/administration & dosage , Animals , Antioxidants/metabolism , Blood Glucose/analysis , Body Weight/drug effects , Diabetes Mellitus, Experimental/chemically induced , Male , Muscle, Skeletal/metabolism , Rats , Streptozocin , Vanadium Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...