Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Neurosci Methods ; 409: 110216, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964474

ABSTRACT

BACKGROUND: Neurological disorders arise primarily from the dysfunction of brain cells, leading to various impairments. Electroencephalography (EEG) stands out as the most popular method in the discovery of neuromarkers indicating neurological disorders. The proposed study investigates the effectiveness of spectral and synchrony neuromarkers derived from resting state EEG in the detection of Mild Cognitive Impairment (MCI) with controls. NEW METHODS: The dataset is composed of 10 MCI and 10 HC groups. Spectral features and synchrony measures are utilized to detect slowing patterns in MCI. Efficient neuro-markers are classified by 25 classification algorithm. Independent samples t-test and Pearson's Correlation Coefficients are applied to reveal group differences for spectral markers, and repeated measures ANOVA is tested for wPLI-based markers. RESULTS: Lower peak amplitudes are prominent in MCI participants for high frequencies indicating slower physiological behavior of the demented EEG. The MCI and HC groups are correctly classified with 95 % acc. using peak amplitudes of beta band with LGBM classifier. Higher wPLI values are calculated for HC participants in high frequencies. The alpha wPLI values achieve a classification accuracy of 99 % using the LGBM algorithm for MCI detection. COMPARISON WITH EXISTING METHODS: The neuro-markers including peak amplitudes, frequencies, and wPLIs with advanced machine learning techniques showcases the innovative nature of this research. CONCLUSION: The findings suggest that peak amplitudes and wPLI in high frequency bands derived from resting state EEG are effective neuromarkers for detection of MCI. Spectral and synchrony neuro-markers hold great promise for accurate MCI detection.

2.
J Neurosci Methods ; 403: 110057, 2024 03.
Article in English | MEDLINE | ID: mdl-38215948

ABSTRACT

BACKGROUND: Individuals in the early stages of Alzheimer's Disease (AD) are typically diagnosed with Mild Cognitive Impairment (MCI). MCI represents a transitional phase between normal cognitive function and AD. Electroencephalography (EEG) records carry valuable insights into cerebral cortex brain activities to analyze neuronal degeneration. To enhance the precision of dementia diagnosis, automatic and intelligent methods are required for the analysis and processing of EEG signals. NEW METHODS: This paper aims to address the challenges associated with MCI diagnosis by leveraging EEG signals and deep learning techniques. The analysis in this study focuses on processing the information embedded within the sequence of raw EEG time series data. EEG recordings are collected from 10 Healthy Controls (HC) and 10 MCI participants using 19 electrodes during a 30 min eyes-closed session. EEG time series are transformed into 2 separate formats of input tensors and applied to deep neural network architectures. Convolutional Neural Network (CNN) and ResNet from scratch are performed with 2D time series with different segment lengths. Furthermore, EEGNet and DeepConvNet architectures are utilized for 1D time series. RESULTS: ResNet demonstrates superior effectiveness in detecting MCI when compared to CNN architecture. Complete discrimination is achieved using EEGNet and DeepConvNet for noisy segments. COMPARISON WITH EXISTING METHODS: ResNet has yielded a 3 % higher accuracy rate compared to CNN. None of the architectures in the literature have achieved 100 % accuracy except proposed EEGNet and DeepConvnet. CONCLUSION: Deep learning architectures hold great promise in enhancing the accuracy of early MCI detection.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Deep Learning , Humans , Time Factors , Cognitive Dysfunction/diagnosis , Electroencephalography/methods , Neural Networks, Computer , Alzheimer Disease/diagnosis
3.
Brain Topogr ; 36(1): 106-118, 2023 01.
Article in English | MEDLINE | ID: mdl-36399219

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative brain disease affecting cognitive and physical functioning. The currently available pharmacological treatments for AD mainly contain cholinesterase inhibitors (AChE-I) and N-methyl-D-aspartic acid (NMDA) receptor antagonists (i.e., memantine). Because brain signals have complex nonlinear dynamics, there has been an increase in interest in researching complexity changes in the time series of brain signals in individuals with AD. In this study, we explore the electroencephalographic (EEG) complexity for making better observation of pharmacological therapy-based treatment effects on AD patients using the permutation entropy (PE) method. We examined EEG sub-band (delta, theta, alpha, beta, and gamma) complexity in de-novo, monotherapy (AChE-I), dual therapy (AChE-I and memantine) receiving AD participants compared with healthy elderly controls. We showed that each frequency band depicts its own complexity profile, which is regionally altered between groups. These alterations were also found to be associated with global cognitive scores. Overall, our findings indicate that entropy measures could be useful to show medication effects in AD.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/drug therapy , Memantine/therapeutic use , Entropy , Electroencephalography/methods , Brain
4.
Comput Methods Programs Biomed ; 206: 106116, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33957376

ABSTRACT

BACKGROUND AND OBJECTIVE: Electroencephalogram (EEG) is one of the most demanded screening tools that investigates the effects of Alzheimer's Disease (AD) on human brain. Identification of AD in early stage gives rise to efficient treatment in dementia. Mild Cognitive Impairment (MCI) is considered as a conversion stage. Reducing EEG complexity can be used as a marker to detect AD. The aim of this study is to develop a 3-way diagnostic classification using EEG complexity in the detection of MCI/AD in clinical practice. This study also investigates the effects of different eyes states, i.e. eyes-open, eyes-closed on classification performance. METHODS: EEG recordings from 85 AD, 85 MCI subjects, and 85 Healthy Controls with eyes-open and eyes- closed are analyzed. Permutation Entropy (PE) values are computed from frontal, central, parietal, temporal, and occipital regions for each EEG epoch. Distribution of PE values are visualized to observe discrimination of MCI/AD with HC. Visual investigations are combined with statistical analysis using ANOVA to determine whether groups are significant or not. Multinomial Logistic Regression model is applied to feature sets in order to classify participants individually. RESULTS: Distribution of measured PE shows that EEG complexity is lower in AD and higher in HC group. MCI group is observed as an intermediate form due to heterogeneous values. Results from 3-way classification indicate that F1-scores and rates of sensitivity and specificity achieve the highest overall discrimination rates reaching up to 100% for at TP8 for eyes-closed condition; and C3, C4, T8, O2 electrodes for eyes-open condition. Classification of HC from both patient groups is achieved best. Eyes-open state increases discrimination of MCI and AD. CONCLUSIONS: This nonlinear EEG methodology study contributes to literature with high discrimination rates for identification of AD. PE is recommended as a practical diagnostic neuro-marker for AD studies. Resting state EEG at eyes-open condition can be more advantageous over eyes-closed EEG recordings for diagnosis of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis , Early Diagnosis , Electroencephalography , Entropy , Humans
5.
Int J Imaging Syst Technol ; 31(2): 509-524, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33821092

ABSTRACT

COVID-19 was first reported as an unknown group of pneumonia in Wuhan City, Hubei province of China in late December of 2019. The rapid increase in the number of cases diagnosed with COVID-19 and the lack of experienced radiologists can cause diagnostic errors in the interpretation of the images along with the exceptional workload occurring in this process. Therefore, the urgent development of automated diagnostic systems that can scan radiological images quickly and accurately is important in combating the pandemic. With this motivation, a deep convolutional neural network (CNN)-based model that can automatically detect patterns related to lesions caused by COVID-19 from chest computed tomography (CT) images is proposed in this study. In this context, the image ground-truth regarding the COVID-19 lesions scanned by the radiologist was evaluated as the main criteria of the segmentation process. A total of 16 040 CT image segments were obtained by applying segmentation to the raw 102 CT images. Then, 10 420 CT image segments related to healthy lung regions were labeled as COVID-negative, and 5620 CT image segments, in which the findings related to the lesions were detected in various forms, were labeled as COVID-positive. With the proposed CNN architecture, 93.26% diagnostic accuracy performance was achieved. The sensitivity and specificity performance metrics for the proposed automatic diagnosis model were 93.27% and 93.24%, respectively. Additionally, it has been shown that by scanning the small regions of the lungs, COVID-19 pneumonia can be localized automatically with high resolution and the lesion densities can be successfully evaluated quantitatively.

6.
Biomed Tech (Berl) ; 65(4): 379-391, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-31825886

ABSTRACT

The general uncertainty of epilepsy and its unpredictable seizures often affect badly the quality of life of people exposed to this disease. There are patients who can be considered fortunate in terms of prediction of any seizures. These are patients with epileptic auras. In this study, it was aimed to evaluate pre-seizure warning symptoms of the electroencephalography (EEG) signals by a convolutional neural network (CNN) inspired by the epileptic auras defined in the medical field. In this context, one-dimensional EEG signals were transformed into a spectrogram display form in the frequency-time domain by applying a short-time Fourier transform (STFT). Systemic changes in pre-epileptic seizure have been described by applying the CNN approach to the EEG signals represented in the image form, and the subjective EEG-Aura process has been tried to be determined for each patient. Considering all patients included in the evaluation, it was determined that the 1-min interval covering the time from the second minute to the third minute before the seizure had the highest mean and the lowest variance to determine the systematic changes before the seizure. Thus, the highest performing process is described as EEG-Aura. The average success for the EEG-Aura process was 90.38 ± 6.28%, 89.78 ± 8.34% and 90.47 ± 5.95% for accuracy, specificity and sensitivity, respectively. Through the proposed model, epilepsy patients who do not respond to medical treatment methods are expected to maintain their lives in a more comfortable and integrated way.


Subject(s)
Electroencephalography/methods , Epilepsy, Generalized/physiopathology , Epilepsy/physiopathology , Humans , Neural Networks, Computer , Quality of Life , Seizures/diagnosis , Seizures/physiopathology
7.
Brain Sci ; 9(5)2019 May 17.
Article in English | MEDLINE | ID: mdl-31109020

ABSTRACT

The studies implemented with Electroencephalogram (EEG) signals are progressing very rapidly and brain computer interfaces (BCI) and disease determinations are carried out at certain success rates thanks to new methods developed in this field. The effective use of these signals, especially in disease detection, is very important in terms of both time and cost. Currently, in general, EEG studies are used in addition to conventional methods as well as deep learning networks that have recently achieved great success. The most important reason for this is that in conventional methods, increasing classification accuracy is based on too many human efforts as EEG is being processed, obtaining the features is the most important step. This stage is based on both the time-consuming and the investigation of many feature methods. Therefore, there is a need for methods that do not require human effort in this area and can learn the features themselves. Based on that, two-dimensional (2D) frequency-time scalograms were obtained in this study by applying Continuous Wavelet Transform to EEG records containing five different classes. Convolutional Neural Network structure was used to learn the properties of these scalogram images and the classification performance of the structure was compared with the studies in the literature. In order to compare the performance of the proposed method, the data set of the University of Bonn was used. The data set consists of five EEG records containing healthy and epilepsy disease which are labeled as A, B, C, D, and E. In the study, A-E and B-E data sets were classified as 99.50%, A-D and B-D data sets were classified as 100% in binary classifications, A-D-E data sets were 99.00% in triple classification, A-C-D-E data sets were 90.50%, B-C-D-E data sets were 91.50% in quaternary classification, and A-B-C-D-E data sets were in the fifth class classification with an accuracy of 93.60%.

8.
Brain Inform ; 4(4): 241-252, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28711988

ABSTRACT

Emotion plays an important role in human interaction. People can explain their emotions in terms of word, voice intonation, facial expression, and body language. However, brain-computer interface (BCI) systems have not reached the desired level to interpret emotions. Automatic emotion recognition based on BCI systems has been a topic of great research in the last few decades. Electroencephalogram (EEG) signals are one of the most crucial resources for these systems. The main advantage of using EEG signals is that it reflects real emotion and can easily be processed by computer systems. In this study, EEG signals related to positive and negative emotions have been classified with preprocessing of channel selection. Self-Assessment Manikins was used to determine emotional states. We have employed discrete wavelet transform and machine learning techniques such as multilayer perceptron neural network (MLPNN) and k-nearest neighborhood (kNN) algorithm to classify EEG signals. The classifier algorithms were initially used for channel selection. EEG channels for each participant were evaluated separately, and five EEG channels that offered the best classification performance were determined. Thus, final feature vectors were obtained by combining the features of EEG segments belonging to these channels. The final feature vectors with related positive and negative emotions were classified separately using MLPNN and kNN algorithms. The classification performance obtained with both the algorithms are computed and compared. The average overall accuracies were obtained as 77.14 and 72.92% by using MLPNN and kNN, respectively.

9.
Bioelectromagnetics ; 38(5): 339-348, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28236321

ABSTRACT

The effectiveness of various therapeutic methods on bone fracture has been demonstrated in several studies. In the present study, we tried to evaluate the effect of local low-magnitude, high-frequency vibration (LMHFV) on rat tibia fracture in comparison with pulsed electromagnetic fields (PEMF) during the healing process. Mid-diaphysis tibiae fractures were induced in 30 Sprague-Dawley rats. The rats were assigned into groups such as control (CONT), LMHFV (15 min/day, 7 days/week), and PEMF (3.5 h/day, 7 days/week) for a three-week treatment. Nothing was applied to control group. Radiographs, serum osteocalcin levels, and stereological bone analyses of the three groups were compared. The X-rays of tibiae were taken 21 days after the end of the healing process. PEMF and LMHFV groups had more callus formation when compared to CONT group; however, the difference was not statistically significant (P = 0.375). Serum osteocalcin levels were elevated in the experimental groups compared to CONT (P ≤ 0.001). Stereological tests also showed higher osteogenic results in experimental groups, especially in LMHFV group. The results of the present study suggest that application of direct local LMHFV on fracture has promoted bone formation, showing great potential in improving fracture outcome. Bioelectromagnetics. 38:339-348, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Fractures, Bone/physiopathology , Fractures, Bone/therapy , Magnetic Field Therapy , Vibration , Animals , Bony Callus/physiopathology , Bony Callus/radiation effects , Fracture Healing/radiation effects , Male , Rats , Rats, Sprague-Dawley
10.
Comput Methods Programs Biomed ; 112(3): 481-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24070543

ABSTRACT

Analysis of directional information flow patterns among different regions of the brain is important for investigating the relation between ECoG (electrocorticographic) and mental activity. The objective is to study and evaluate the information flow activity at different frequencies in the primary motor cortex. We employed Granger causality for capturing the future state of the propagation path and direction between recording electrode sites on the cerebral cortex. A grid covered the right motor cortex completely due to its size (approx. 8 cm×8 cm) but grid area extends to the surrounding cortex areas. During the experiment, a subject was asked to imagine performing two activities: movement of the left small finger and/or movement of the tongue. The time series of the electrical brain activity was recorded during these trials using an 8×8 (0.016-300 Hz band with) ECoG platinum electrode grid, which was placed on the contralateral (right) motor cortex. For detection of information flow activity and communication frequencies among the electrodes, we have proposed a method based on following steps: (i) calculation of analytical time series such as amplitude and phase difference acquired from Hilbert transformation, (ii) selection of frequency having highest interdependence for the electrode pairs for the concerned time series over a sliding window in which we assumed time series were stationary, (iii) calculation of Granger causality values for each pair with selected frequency. The information flow (causal influence) activity and communication frequencies between the electrodes in grid were determined and shown successfully. It is supposed that information flow activity and communication frequencies between the electrodes in the grid are approximately the same for the same pattern. The successful employment of Granger causality and Hilbert transformation for the detection of the propagation path and direction of each component of ECoG among different sub-cortex areas were capable of determining the information flow (causal influence) activity and communication frequencies between the populations of neurons successfully.


Subject(s)
Electroencephalography/methods , Cerebral Cortex/physiology , Humans , Tongue/physiology
11.
Gynecol Endocrinol ; 25(8): 524-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19903057

ABSTRACT

BACKGROUND: Osteoporosis is characterised by low bone mass and structural deterioration of bone tissue. In this study, the role of long-term extremely low frequency magnetic field (ELFMF) on osteoporosis was evaluated. METHODS: The experiments were performed on 45 female Sprague-Dawley rats. The rats were divided into three groups (n = 15): Group I (ovariectomy (OVX) + ELFMF exposure), Group II (ovariectomised rats did not receive any treatment) and Group III (cage-control). Six months, 50 Hz, 1.5 mT magnetic field (MF) was used on Group I and Group II. Total body images of the animals were obtained with dual-energy X-ray absorptiometry. RESULTS: Bone mineral content (BMC) and bone mineral density values were increased significantly in ELFMF group, decreased in the group of OVX and not changed in cage-control. At the end of the 6 months after exposure with ELFMF, alteration in studied biochemical markers were detected significant. Bone specific alkaline phosphatase (BAP) levels were increased in ELFMF and decreased in OVX groups when compared with cage-control group. N-telopeptide levels in OVX group were significantly higher than other groups. Testosterone and cortisol levels in OVX group were significantly higher and estradiol was lower than other groups. CONCLUSIONS: Our study suggests that ELFMF may be useful in the prevention and treatment of osteoporosis.


Subject(s)
Magnetic Field Therapy , Osteoporosis/therapy , Alkaline Phosphatase/blood , Animals , Bone Density , Collagen Type I/blood , Estradiol/blood , Female , Hydrocortisone/blood , Osteoporosis/blood , Ovariectomy , Peptides/blood , Rats , Rats, Sprague-Dawley , Testosterone/blood , Time Factors
12.
J Neurosci Methods ; 178(1): 214-8, 2009 Mar 30.
Article in English | MEDLINE | ID: mdl-19084556

ABSTRACT

The study presented in this paper shows that electrocorticographic (ECoG) signals can be classified for making use of a human brain-computer interface (BCI) field. The results show that certain invariant phase transition features can be reliably used to classify two types of imagined movements accurately. Those are the left small-finger and tongue movements. Our approach consists of two main parts: channel selection based on Tsallis entropy in Hilbert domain and the nonlinear classification of motor imagery with support vector machines (SVMs). The new approach, based on Hilbert and statistical/entropy measurements, were combined with SVMs based on admissible kernels for classification purposes. The classification accuracy rates were 95% (264/278) and 73% (73/100) for training and testing sets, respectively. The results support the use of classification methods for ECoG-based BCIs.


Subject(s)
Artificial Intelligence , Brain/physiology , Electrocardiography/methods , Evoked Potentials, Motor/physiology , Movement/physiology , User-Computer Interface , Entropy , Humans , Imagination
SELECTION OF CITATIONS
SEARCH DETAIL
...