Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 111(23): 8535-40, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24872444

ABSTRACT

The rate of protein evolution is determined by a combination of selective pressure on protein function and biophysical constraints on protein folding and structure. Determining the relative contributions of these properties is an unsolved problem in molecular evolution with broad implications for protein engineering and function prediction. As a case study, we examined the structural divergence of the rapidly evolving o-succinylbenzoate synthase (OSBS) family, which catalyzes a step in menaquinone synthesis in diverse microorganisms and plants. On average, the OSBS family is much more divergent than other protein families from the same set of species, with the most divergent family members sharing <15% sequence identity. Comparing 11 representative structures revealed that loss of quaternary structure and large deletions or insertions are associated with the family's rapid evolution. Neither of these properties has been investigated in previous studies to identify factors that affect the rate of protein evolution. Intriguingly, one subfamily retained a multimeric quaternary structure and has small insertions and deletions compared with related enzymes that catalyze diverse reactions. Many proteins in this subfamily catalyze both OSBS and N-succinylamino acid racemization (NSAR). Retention of ancestral structural characteristics in the NSAR/OSBS subfamily suggests that the rate of protein evolution is not proportional to the capacity to evolve new protein functions. Instead, structural features that are conserved among proteins with diverse functions might contribute to the evolution of new functions.


Subject(s)
Bacterial Proteins/chemistry , Carbon-Carbon Lyases/chemistry , Genetic Variation , Protein Structure, Quaternary , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/classification , Bacterial Proteins/genetics , Carbon-Carbon Lyases/classification , Carbon-Carbon Lyases/genetics , Catalytic Domain , Crystallography, X-Ray , Deinococcus/enzymology , Deinococcus/genetics , Enterococcus faecalis/enzymology , Enterococcus faecalis/genetics , Evolution, Molecular , INDEL Mutation , Listeria/enzymology , Listeria/genetics , Models, Molecular , Phylogeny , Protein Structure, Secondary , Protein Structure, Tertiary , Thermus thermophilus/enzymology , Thermus thermophilus/genetics
2.
Mol Cancer Ther ; 12(12): 2709-21, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24092806

ABSTRACT

Histone deacetylase inhibitors (HDACi) are anticancer agents that induce hyperacetylation of histones, resulting in chromatin remodeling and transcriptional changes. In addition, nonhistone proteins, such as the chaperone protein Hsp90, are functionally regulated through hyperacetylation mediated by HDACis. Histone acetylation is thought to be primarily regulated by HDACs 1, 2, and 3, whereas the acetylation of Hsp90 has been proposed to be specifically regulated through HDAC6. We compared the molecular and biologic effects induced by an HDACi with broad HDAC specificity (vorinostat) with agents that predominantly inhibited selected class I HDACs (MRLB-223 and romidepsin). MRLB-223, a potent inhibitor of HDACs 1 and 2, killed tumor cells using the same apoptotic pathways as the HDAC 1, 2, 3, 6, and 8 inhibitor vorinostat. However, vorinostat induced histone hyperacetylation and killed tumor cells more rapidly than MRLB-223 and had greater therapeutic efficacy in vivo. FDCP-1 cells dependent on the Hsp90 client protein Bcr-Abl for survival, were killed by all HDACis tested, concomitant with caspase-dependent degradation of Bcr-Abl. These studies provide evidence that inhibition of HDAC6 and degradation of Bcr-Abl following hyperacetylation of Hsp90 is likely not a major mechanism of action of HDACis as had been previously posited.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Acetylation/drug effects , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Activation/drug effects , Fusion Proteins, bcr-abl/metabolism , HSP90 Heat-Shock Proteins/metabolism , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/pharmacology , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/mortality , Lymphoma/pathology , Mice , Vorinostat , Xenograft Model Antitumor Assays
3.
Biochemistry ; 52(42): 7512-21, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24060347

ABSTRACT

Thermobifida fusca o-succinylbenzoate synthase (OSBS), a member of the enolase superfamily that catalyzes a step in menaquinone biosynthesis, has an amino acid sequence that is 22 and 28% identical with those of two previously characterized OSBS enzymes from Escherichia coli and Amycolatopsis sp. T-1-60, respectively. These values are considerably lower than typical levels of sequence identity among homologous proteins that have the same function. To determine how such divergent enzymes catalyze the same reaction, we determined the structure of T. fusca OSBS and identified amino acids that are important for ligand binding. We discovered significant differences in structure and conformational flexibility between T. fusca OSBS and other members of the enolase superfamily. In particular, the 20s loop, a flexible loop in the active site that permits ligand binding and release in most enolase superfamily proteins, has a four-amino acid deletion and is well-ordered in T. fusca OSBS. Instead, the flexibility of a different region allows the substrate to enter from the other side of the active site. T. fusca OSBS was more tolerant of mutations at residues that were critical for activity in E. coli OSBS. Also, replacing active site amino acids found in one protein with the amino acids that occur at the same place in the other protein reduces the catalytic efficiency. Thus, the extraordinary divergence between these proteins does not appear to reflect a higher tolerance of mutations. Instead, large deletions outside the active site were accompanied by alteration of active site size and electrostatic interactions, resulting in small but significant differences in ligand binding.


Subject(s)
Actinomycetales/enzymology , Biological Evolution , Carbon-Carbon Lyases/metabolism , Escherichia coli/enzymology , Magnesium/metabolism , Binding Sites , Carbon-Carbon Lyases/chemistry , Carbon-Carbon Lyases/genetics , Catalysis , Catalytic Domain , Models, Molecular , Mutagenesis, Site-Directed , Mutation/genetics , Protein Structure, Secondary , Structure-Activity Relationship , Substrate Specificity
4.
J Proteome Res ; 7(12): 5177-86, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19367703

ABSTRACT

Inhibitors of class 1 and class 2 histone deacetylase (HDAC) enzymes have shown antitumor activity in human clinical trials. More recently, there has been interest in developing subtype-selective HDAC inhibitors designed to retain anticancer activity while reducing potential side effects. Efforts have been initiated to selectively target HDAC1 given its role in tumor proliferation and survival. The development of HDAC1-specific inhibitors will require the identification of HDAC1-selective pharmacodynamic markers that correlate closely with HDAC1-inhibition in vitro and in vivo. Existing histone markers of HDAC target engagement were developed using pan-HDAC inhibitors and do not necessarily represent robust readouts for isoform-specific inhibitors. Therefore, we have initiated a proteomic approach to identify readouts for HDAC1 inhibition. This approach involves the use of differential mass spectrometry (dMS) to identify post-translational changes in histones by profiling histone-enriched cellular fractions treated with various HDAC inhibitors. In this study, we profiled histones isolated from the HCT116 human colon cancer cell line that have been treated with compounds from multiple chemical classes that are specific for HDAC1; HDAC1 and 3; and HDAC1, 3, and 6 enzymes. In two independent experiments, we identified 24 features that correlated with HDAC1-inhibition. Among the peptides modulated by HDAC1-selective inhibitors were Ac-H2B-K5 from histone H2B, and Ac-H3-K18 from histone H3. Commercially available antibodies to specific histone acetyl-lysine residues were used to confirm that these peptides also provide pharmacodynamic readouts for HDAC1-selective inhibitors in vivo and in vitro. These results show the utility of dMS in guiding the identification of specific readouts to aid in the development of HDAC-selective inhibitors.


Subject(s)
Gene Expression Regulation, Enzymologic , Histone Deacetylases/metabolism , Histones/chemistry , Mass Spectrometry/methods , Proteomics/methods , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chromatography, Liquid/methods , False Positive Reactions , Histones/metabolism , Humans , Peptides/chemistry , Protein Isoforms , Proteome , ROC Curve , Spectrometry, Mass, Electrospray Ionization
5.
Biochemistry ; 41(21): 6588-94, 2002 May 28.
Article in English | MEDLINE | ID: mdl-12022862

ABSTRACT

A new mode of allosteric regulation of nucleic acid enzymes is described and shown to operate effectively with hammerhead ribozymes. In the "TRAP" design (for targeted ribozyme-attenuated probe), a 3' terminal "attenuator" anneals to conserved bases in the catalytic core to form the "off" state of the ribozyme. Binding of RNA or DNA to an antisense sequence linking the ribozyme and attenuator frees the core to fold into an active conformation, even though the antisense sequence itself does not interfere with the ribozyme. TRAP hammerheads based on the previously characterized HH8 ribozyme were shown to be activated more than 250-fold upon addition of the sense strand. RNA oligonucleotides were more effective activators than DNA oligos, consistent with the known relative helix stabilities (RNA-RNA > RNA-DNA). Oligonucleotides that directly paired with the attenuator gave up to 1760-fold activation. The magnitude of the activation was greater when the oligo was added prior to folding than if it was added during the cleavage reaction. The TRAP design requires no prior knowledge of (deoxy)ribozyme structure beyond identification of the essential core. Thus, this approach should be readily generalizable to other systems for biomedicine, sensor technology, and additional applications.


Subject(s)
Oligodeoxyribonucleotides/pharmacology , Oligonucleotides, Antisense/pharmacology , Oligoribonucleotides/pharmacology , RNA, Catalytic/metabolism , Allosteric Regulation/drug effects , Base Pairing/genetics , Base Pairing/physiology , Binding, Competitive , Catalytic Domain , Enzyme Activation , Kinetics , Nucleic Acid Conformation , Operon/genetics , Operon/physiology , RNA, Catalytic/chemistry , Thermodynamics
6.
Nucleic Acids Res ; 30(6): 1401-7, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11884639

ABSTRACT

Boron neutron capture therapy (BNCT), an experimental treatment for certain cancers, destroys only cells near the boron; however, there is a need to develop highly specific delivery agents. As nucleic acid aptamers recognize specific molecular targets, we investigated the influence of boronated nucleotide analogs on RNA function and on the systematic evolution of ligands by exponential enrichment (SELEX) process. Substitution of guanosine 5'-(alpha-P-borano) triphosphate (bG) for GTP or uridine 5'-(alpha-P-borano) triphosphate (bU) for UTP in several known aptamers diminished or eliminated target recognition by those RNAs. Specifically, ATP-binding aptamers containing the zeta-fold, which appears in several selections for adenosine aptamers, became inactive upon bG substitution but were only moderately affected by bU substitution. Selections were carried out using the bG or bU analogs with C8-linked ATP agarose as the binding target. The selections with bU and normal NTP yielded some zeta-fold aptamers, while the bG selection yielded none of this type. Non-zeta aptamers from bU and bG populations tolerated the borano substitution and many required it. The borano nucleotide requirement is specific; bU could not be used in bG-dependent aptamers nor vice versa. The borano group plays an essential role, as yet undefined, in target recognition or RNA structure. We conclude that the bG and bU nucleotides are fully compatible with SELEX, and that these analogs could be used to make boronated aptamers as therapeutics for BNCT.


Subject(s)
Adenosine Triphosphate/metabolism , Boron/chemistry , Oligoribonucleotides/chemistry , Oligoribonucleotides/metabolism , Adenosine Triphosphate/analogs & derivatives , Base Sequence , Binding Sites , Boron Neutron Capture Therapy , Directed Molecular Evolution , Molecular Sequence Data , Neoplasms/radiotherapy , Nucleic Acid Conformation , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...